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Euler Conditions



Euler Conditions

• We now turn our attention to discrete time Markov
decision models with purely continuous state and action
spaces and continuously differentiable reward and
transition functions.

• The optimal solutions to such models can be
characterized by “first-order” equilibrium conditions
called the Euler conditions.

• Euler conditions help us understand the essential
features of a dynamic decision problem and offer us an
alternative way to solve for the optimal policy.

• Let ds and dx denote the dimensions of the state and
action variables, respectively.
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• We first derive the Euler conditions under the simplifying
assumptions that the model is infinite-horizon and
deterministic and the actions are unconstrained.

• Under these assumptions, the Bellman equation takes the
relatively simple form:

V (s) = max
x

{f(s, x) + δV (g(s, x))}, s ∈ S.
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• The Euler conditions involve the derivative of the value
function

λ(s) ≡ V ′(s).

• We call λ : S 7→ ℜds the shadow price function because it
gives the prices that the dynamically optimizing agent
imputes to each of the ds state variables.
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• The Euler conditions are derived by applying the K-K-T
and Envelope Theorems to the Bellman equation.

• The K-K-T Theorem implies that the optimal action x,
given state s, satisfies the equimarginality condition

0 = fx(s, x) + δλ(g(s, x))gx(s, x).

• The Envelope Theorem implies

λ(s) = fs(s, x) + δλ(g(s, x))gs(s, x).

• Here, fs, fx, gs, and gx denote partial derivatives.
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• The Euler conditions imply that along an optimal path

0 = fx(st, xt) + δλt+1gx(st, xt)

λt = fs(st, xt) + δλt+1gs(st, xt).
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Steady-State

• The model may possess a well-defined steady-state to
which the optimized economic process converges over
time:

s∗ ≡ lim st

x∗ ≡ limxt

λ∗ ≡ limλt.

• The steady-state state s∗, action x∗, and shadow price λ∗,
if they exist, must satisfy the Euler and state stationarity
conditions:

0 = fx(s
∗, x∗) + δλ∗gx(s

∗, x∗)

λ∗ = fs(s
∗, x∗) + δλ∗gs(s

∗, x∗)

s∗ = g(s∗, x∗).
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• The steady-state conditions pose a finite-dimensional
nonlinear equation that can be solved numerically, and
often analytically, without having to solve the Bellman
Equation.

• Knowledge of the steady-state is useful for understanding
the longrun tendencies of the optimized economic
process.

• Knowledge of the steady-state is also useful when
developing initial guesses for numerical solution
algorithms for the model.
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Euler Equation

• If the state transition function g does not depend on the
state s, the shadow price function may be eliminated as
an unknown and the Euler conditions may be reduced to a
single functional equation in a single unknown, the
optimal policy x:

0 = fx(s, x(s)) + δfs(g(x(s)), x(g(x(s))))g
′(x(s)).

• This equation, when it exists, is called the Euler equation.
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• The Euler equation implies that along an optimal path

0 = fx(st, xt) + δfs(st+1, xt+1)g
′(xt)

• and, in steady-state

0 = fx(s
∗, x∗) + δfs(s

∗, x∗)g′(x∗)

s∗ = g(x∗).
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Stochastic Euler Conditions

• If the model is stochastic, the Euler conditions take the
form:

0 = fx(s, x) + δEϵ [λ(g(s, x, ϵ))gx(s, x, ϵ)]

and

λ(s) = fs(s, x) + δEϵ [λ(g(s, x, ϵ))gs(s, x, ϵ)]

for all s ∈ S.
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• Stochastic models lack simple steady-states, as the states
visited by the process and the actions taken by the agent
will vary over time due to random shocks.

• However, under mild conditions, if the model is stationary,
the process over time will visit states according to a
well-defined ergodic distribution.

• Although the erodic distribution can be formally
characterized via a functional equation, the easiest way to
visualize it is to solve and simulate the model over a large
number of periods.

11



• Although stochastic models lack simple steady-states, it is
nonetheless useful to derive the steady-state of the
model with its shock fixed at its mean.

• Knowledge of the deterministic steady-state of the
non-stochastic version of the model is useful when
developing initial guesses for numerical solution
algorithms.

• Although the deterministic steady-state need not be the
mean of the ergodic distribution, the two should be
reasonably close if the ergodic distribution is more or less
symmetric.
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Bound Constraints

• If the actions are subject to simple bounds that are
differentiable functions of the state variable

a(s) ≤ x ≤ b(s)

then the Euler conditions take the form of a functional
complementarity problem

ai(s) ≤ xi ≤ bi(s)

xi > ai(s) =⇒ µi(s) ≥ 0

xi < bi(s) =⇒ µi(s) ≤ 0

λ(s) = fs(s, x) + δEϵ [λ(g(s, x, ϵ))gs(s, x, ϵ)]

+min(µ(s), 0)a′(s) + max(µ(s), 0)b′(s)
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• ... where

µ(s) ≡ fx(s, x) + δEϵ [λ(g(s, x, ϵ))gx(s, x, ϵ)]

• Here, µi, measures the current and expected future reward
from a marginal increase in the ith action variable xi.

• At the optimum, µi must not be positive if xi is below its
upper bound, otherwise additional rewards obtain by
raising xi.

• Similarly, µi must not be negative if xi is above its lower
bound, otherwise additional rewards obtain by reducing
xi.

• If xi is strictly between its bounds, µi must be zero.
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Linear-Quadratic Control



Linear-Quadratic Control Model

• A linear-quadratic (L-Q) control model is a discrete time
continuous state-action Markov decision model with:

• quadratic reward function
• linear transition function
• unconstrained actions

• The L-Q control model is one of few discrete time
continuous state continuous action Markov decision
models with known closed-form solution.

15



• The L-Q control model reward and transition functions
take the form
f(s, x) = F0 + Fss+ Fxx+ 1

2s
′Fsss+ s′Fsxx+ 1

2x
′Fxxx

g(s, x, ϵ) = G0 +Gss+Gxx+ ϵ.

• Variables
s = ds × 1 state vector
x = dx × 1 action vector
ϵ = ds × 1 exogenous shock vector

• Parameters
F0 1× 1 Fs 1× ds Fx 1× dx
Fss ds × ds Fsx ds × dx Fxx dx × dx
G0 ds × 1 Gs ds × ds Gx ds × dx

Fss symmetric, Fxx negative definite symmetric, and
Eϵ = 0.
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• One may show by induction that the optimal policy and
shadow price functions of the stationary infinite-horizon
L-Q control model are linear in the state variable:

x(s) = x∗ + Γ(s− s∗)

λ(s) = λ∗ + Λ(s− s∗).

• Here, Γ is dx × ds, Λ is symmetric ds × ds, and s∗, x∗, and
λ∗ are the deterministic steady-state state, action, and
shadow price.

• The optimal policy and shadow price functions of the L-Q
model do not depend on higher moments of the shock —
this is known as the certainty-equivalence property.
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• The deterministic steady-state state s∗, action x∗, and
shadow price λ∗ can be computed by jointly solving the
Euler conditions and the state stationarity condition, a
linear equation: F ′

sx Fxx δG′
x

Fss Fsx δG′
s − In

Gs − In Gx 0


 s∗

x∗

λ∗

 =

 −F ′
x

−F ′
s

−G0


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Riccati Equation

• Λ is characterized by the vector fixed-point Riccati
equation:

Λ = −HsxH
−1
xx H

′
sx +Hss

where
Hss = δG′

sΛGs + Fss

Hsx = δG′
sΛGx + Fsx

Hxx = δG′
xΛGx + Fxx

• Given Λ, Γ may be derived from

Γ = −H−1
xx H

′
sx

• The Riccati equation can often be solved using function
iteration, but QZ decomposition is more reliable.
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• If the state and action are one-dimensional, the Riccati
equation takes a quadratic form

aΛ2 + bΛ + c = 0

where

a = δG2
x

b = Fxx − δFxxG
2
s − δFssG

2
x + 2δFsxGsGx

c = F 2
sx − FssFxx

which can be solved using the quadratic formula.
• If in addition FssFxx = F 2

sx, a condition often encountered
in economic problems, then

Λ =
1

G2
x

(FssG
2
x − 2FsxGsGx + FxxG

2
s − Fxx/δ).
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Model 1:

Linear-Quadratic Model
Jupyter notebook:
dp/16 Linear-Quadratic Model.ipynb



One-dimensional L-Q control problem

Consider the one-dimensional L-Q control problem with

F0 = 0.0 Fs = −0.8 Fx = −0.7

Fss = −0.8 Fsx = 0.0 Fxx = −0.1

G0 = 0.5 Gs = −0.1 Gx = 0.2

δ = 0.9
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To solve the model using LQmodel, see the dp/16
Linear-Quadratic Model notebook

F0, Fs, Fx = 0.0, -1.0, -0.0
Fss, Fsx, Fxx = -1.0, 0.0, -0.1
G0, Gs, Gx = 0.5, -0.2, 0.5
delta = 0.9

model = LQmodel(F0,Fs,Fx,Fss,Fsx,Fxx,G0,Gs,Gx,delta)
model.steady

{'p': array([[-0.4637]]),
's': array([[-0.4528]]),
'v': array([[1.3257]]),
'x': array([[-2.0867]])}
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Higher-dimensional L-Q control problem

Consider the higher-dimensional L-Q control problem with
F0 = 3 and δ = 0.95.

Fs =
[
1 1

]
Fx =

[
2 3

]

Fss =

[
−7 −2

−2 −8

]
Fsx =

[
0 0

0 1

]
Fxx =

[
−2 0

0 −2

]

G0 =

[
1

1

]
Gs =

[
−1 1

1 0

]
Gx =

[
−1 −1

2 3

]
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To solve the model, execute the script

F0 = 3
Fs = [1, 0]
Fx = [1, 1]
Fss = [[-7, -2],[-2, -8]]
Fsx = [[0, 0], [0, 1]]
Fxx = [[-2, 0], [0, -2]]
G0 = [[1], [1]]
Gs = [[-1, 1],[1, 0]]
Gx = [[-1, -1],[2, 3]]
delta = 0.95

model2 = LQmodel(F0,Fs,Fx,Fss,Fsx,Fxx,G0,Gs,Gx,delta)
model2.steady
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This should return, along with other information,

sstar =
0.6436
-0.3275
xstar =
0.1272
-0.7418
pstar =
-2.1849
-1.4849
vstar =
24.9664
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Figure 3: Optimal Policy x1
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Linear-Quadratic Approximation

• Because L-Q models are relatively easy to solve, many
analysts use linear-quadratic approximation to compute
approximate solutions to more general models.

• L-Q approximation calls for
• replace reward function f with quadratic approximation
• replace state transition function g with linear
approximation

• discard action constraints, if any exist

• Then accept the optimal policy of resulting L-Q control
model as an approximate solution to the original model.
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• Typically, g and f approximated using first- and
second-order Taylor expansions about the deterministic
steady-state state s∗ and action x∗:

f(s, x) ≈ f∗ + f∗
s (s− s∗) + f∗

x(x− x∗) + 1
2 (s− s∗)′f∗

ss(s− s∗)

+(s− s∗)′f∗
sx(x− x∗) + 1

2 (x− x∗)′f∗
xx(x− x∗)

g(s, x, ϵ) ≈ s∗ + g∗s (s− s∗) + g∗x(x− x∗).

• Here, f∗, f∗
s , f∗

x , f∗
ss, f∗

sx, f∗
xx, g∗, g∗s , and g∗x are the values

and partial derivatives of f and g evaluated at the
deterministic steady-state.
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• This model can be recast in canonical form using the
following substitutions:

F0 = f∗ − f∗
s s

∗ − f∗
xx

∗ + 1
2s

∗′f∗
sss

∗ + s∗′f∗
sxx

∗ + 1
2x

∗′f∗
xxx

∗

Fs = f∗
s − s∗′f∗

ss − x∗′f∗
xs

Fn = f∗
n − s∗′f∗

sx − x∗′f∗
xx

Fss = f∗
ss

Fsx = f∗
sx

Fxx = f∗
xx

G0 = g − g∗ss
∗ − g∗xx

∗

Gs = g∗s
Gx = g∗x
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• L-Q approximation relies on Taylor series expansions that
are valid only near the deterministic steady-state.

• L-Q approximation can work well near the steady-state if
the model is deterministic or has low variance shock.

• However, L-Q approximation will perform poorly if shocks
can drive the state variable far from the steady-state,
where Taylor approximations deteriorate.

• L-Q approximation will perform especially poorly if the
ignored constraints are occasionally binding.

• L-Q approximation is discouraged, except when
assumptions of the L-Q model hold globally, or very nearly
so.
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One-Dimensional Continuous Action
Models



Model 2:

Deterministic Optimal Economic
Growth
Jupyter notebook:
dp/06 Deterministic Optimal Economic Growth.ipynb



Deterministic Optimal Economic Growth

• Consider an abstract economy that produces and
consumes a single composite good.

• Each period t begins with a predetermined stock of wealth
st, of which a quantity kt is invested and the remainder
st − kt is consumed, yielding a social benefit log(st − kt).

• Wealth evolves according to st+1 = kβt , where β is the
aggregate production elasticity.

• What consumption-investment policy maximizes the
present value of current and future social benefits?
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Formulation

This is an infinite-horizon, deterministic model with the
following structural features:

• One continuous state variable, wealth

st ∈ (0,∞).

• One continuous action variable, investment

kt ∈ [0, st].
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• The reward is current social benefit

log(st − kt).

• State transitions are governed by

st+1 = kβt

where 0 < β < 1.
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Bellman Equation

The present value of current and future social benefits, given
wealth s, satisfies the Bellman equation

V (s) = max
0≤k≤s

{
log(s− k) + δV (kβ)

}
.
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• This Bellman equation has a well-known closed-form
solution

V (s) = v∗ +
1

1− δβ
(log(s)− log(s∗))

with optimal policy
k = δβs,

where
s∗ = (δβ)β/(1−β)

v∗ = log((1− δβ)s∗)/(1− δ).

• Knowledge of the closed-form solution will allow us to
test the accuracy of approximate solutions obtained
numerically.
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Euler Conditions

• By assumptions, the constraints on k will never bind at an
optimum, implying that the shadow price function
λ(s) = V ′(s) must satisfy the Euler conditions

0 = −(s− k)−1 + δβλ(kβ)kβ−1

λ(s) = (s− k)−1.

• The Euler conditions imply that along the optimal path

λt = δβλt+1k
β−1
t = (st − kt)

−1.
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Steady-State

• The steady-state wealth s∗, investment k∗, and shadow
price λ∗ must satisfy the Euler and state stationarity
conditions

λ∗ = δβλ∗k∗β−1 = (s∗ − k∗)−1

s∗ = k∗β.

• These conditions imply
s∗ = (δβ)β/(1−β)

k∗ = (δβ)
1

1−β

λ∗ = (δβ)β/(β−1)

1−δβ .
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Numerical Solution

• The collocation method calls for the value function to be
approximated by a linear combination of n judiciously
chosen basis functions ϕj

V (s) ≈
n∑

j=1

cjϕj(s).

• The n coefficients cj are fixed by requiring the value
function approximant to satisfy the Bellman equation at n
judiciously chosen nodes si.
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This requires solving the n nonlinear collocation equations

n∑
j=1

cjϕj(si) = max
0≤k≤si

log(si − k) + δ

n∑
j=1

cjϕj(k
β)

 ,

i = 1, 2, . . . , n, for the n unknown coefficients cj , j = 1, 2, . . . , n.
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Parametric Example

• Open and run CompEcon demo program dp/06
Deterministic Optimal Economic Growth Model.

• This demo solves the deterministic optimal economic
growth model assuming β = 0.5 and δ = 0.9.

• The value function is approximated by a linear
combination of n = 15 Chebychev polynomial basis
functions on [0.2, 1.0].

44



0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Wealth

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
In

ve
st

m
en

t

s *  = 0.45
V *  = 0.20

Optimal Investment Policy

Chebychev Collocation
L-Q Approximation
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Parametric Analysis

• The steady-state wealth and investment are 0.45 and 0.20,
respectively.

• How do these values change if ...
• production elasticity is 0.7? 0.34 and 0.21.
• production elasticity is 0.3? 0.57 and 0.15.
• planner discounts the future less (δ = 0.95)? 0.47 and 0.23.

• How would you revise the model and code to allow for
stochastic production shocks?
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Model 3:

Stochastic Optimal Economic
Growth
Jupyter notebook:
dp/07 Stochastic Optimal Economic Growth.ipynb



Stochastic Optimal Economic Growth

• Consider an abstract economy that produces and
consumes a single composite good.

• Each period t begins with a predetermined stock of wealth
st, of which a quantity kt is invested and the remainder
st − kt is consumed, yielding a social benefit u(st − kt).

• Wealth evolves according to st+1 = γkt + ϵt+1h(kt) where
γ is the capital survival rate (1 minus the depreciation
rate), h is the aggregate production function, and the ϵ are
serially i.i.d. positive production shocks with mean 1.

• What consumption-investment policy maximizes the
present value of current and expected future social
benefits?
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Formulation

This is an infinite-horizon, stochastic model with the following
structural features:

• One continuous state variable, wealth

st ∈ (0,∞).

• One continuous action variable, investment

kt ∈ [0, st].
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• The reward is current social benefit

u(st − kt)

where u′ > 0, u′′ < 0, and u′(0) = ∞.
• State transitions are governed by

st+1 = γkt + ϵt+1h(kt)

where 0 < γ < 1, h′ > 0, h′′ < 0, and h(0) = 0.
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Bellman Equation

The present value of current and expected future social
benefits, given wealth s, satisfies the Bellman equation

V (s) = max
0≤k≤s

{u(s− k) + δEϵV (γk + ϵh(k))} .
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Euler Conditions

• By assumptions, the constraints on k will never bind at an
optimum, implying that the shadow price of wealth λ(s)

must satisfy the Euler conditions

0 = −u′(s− k) + δEϵ

[
λ(γk + ϵh(k))(γ + ϵh′(k))

]
λ(s) = u′(s− k).

• The Euler conditions imply that along the optimal path

u′t = δEt

[
(γ + h′t+1)u

′
t+1

]
where u′t ≡ u′(st − kt) is marginal social benefit in period t

and h′t+1 ≡ ϵt+1h
′(kt) is the ex post marginal product of

capital in period t+ 1.
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Deterministic Steady-State

• The steady-state wealth s∗, investment k∗, and shadow
price λ∗ when the production shock ϵ fixed at its mean 1

must satisfy the Euler and state stationarity conditions

0 = −u′(s∗ − k∗) + δλ∗(γ + h′(k∗))

λ∗ = u′(s∗ − k∗)

s∗ = γk∗ + h(k∗).
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• The deterministic steady-state conditions imply the
Golden Rule

h′(k∗) = 1− γ + ρ

where ρ ≡ 1/δ − 1 is the discount rate.
• That is, in deterministic steady-state, the marginal
product of capital equals the capital depreciation rate
plus the discount rate.
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Numerical Solution

• The collocation method calls for the value function to be
approximated by a linear combination of n judiciously
chosen basis functions ϕj :

V (s) ≈
n∑

j=1

cjϕj(s).

• The n coefficients cj are fixed by requiring the value
function approximant to satisfy the Bellman equation at n
judiciously chosen nodes si.
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This requires solving the n nonlinear collocation equations

n∑
j=1

cjϕj(si) = max
0≤k≤si

u(si − k) + δEϵ

n∑
j=1

cjϕj(γk + ϵh(k))

 ,

i = 1, 2, . . . , n, for the n unknown coefficients cj , j = 1, 2, . . . , n.
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Parametric Example

• Open and run CompEcon demo program dp/07
Stochastic Optimal Economic Growth Model.

• This demo solves the stochastic optimal economic growth
model assuming

• u(c) = c1−α/(1− α), α = 0.2;
• h(k) = kβ , β = 0.5;
• ϵ are serially i.i.d. lognormal, mean 1, volatility σ = 0.1;
• γ = 0.9, δ = 0.9.

• The value function is approximated by a linear
combination of n = 10 Chebychev polynomial basis
functions on [5, 10].

• The production shock ϵ is discretized using an m = 3 node
Gaussian quadrature scheme.
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Parametric Analysis

• The ergodic distribution of wealth has mean 7.41 and
standard deviation 0.34.

• How do these values change if ...
• production volatility rises to 0.15? 7.42 and 0.52.
• production volatility falls to 0.05? 7.42 and 0.17.

• How would you revise the model and code to allow for
constant absolute risk aversion?
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Model 4:

Public Renewable Resource
Management

Jupyter notebook:
dp/08 Public Renewable Resource Management.ipynb



Public Renewable Resource Management

• A social planner wishes to maximize social surplus derived
from harvesting a publicly-owned renewable resource.

• Each period t begins with a predetermined stock st of the
resource, of which a quantity qt is harvested at a constant
unit cost k and sold at a market clearing price pt = p(qt).

• The remainder st − qt is retained for reproduction, yielding
a resource stock st+1 = g(st − qt) the following period.

• What harvest policy maximizes the present value of
current and future social surplus?
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In the absence of human intervention, the natural system
admits three steady-states:

• Extinction, s∗ = 0

• Unsustainable, Unstable Steady-State s∗1

• Sustainable, Stable Steady-State s∗2
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Formulation

This is an infinite-horizon, deterministic model with the
following structural features:

• One continuous state variable, resource stock

st ∈ [0,∞).

• One continuous action variable, harvest

qt ∈ [0, st].
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• The reward is current social surplus∫ qt

0
p(q)dq − kqt

where p > 0, p′ < 0, p(0) = ∞, and k > 0.
• State transitions are governed by

st+1 = g(st − qt)

where g ≥ 0, g(0) = 0, and g′(0) > 0.
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Bellman Equation

The present value of current and future social surplus, given a
resource stock s, satisfies the Bellman equation

V (s) = max
0≤q≤s

{∫ q

0
p(ξ)dξ − kq + δV (g(s− q))

}
.
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Euler Conditions

• By assumptions, the constraint on q will never bind at an
optimum, implying that the shadow price of the resource
λ(s) must satisfy the Euler conditions:

p(q) = k + δλ(g(s− q))g′(s− q)

λ(s) = δλ(g(s− q))g′(s− q).

• The Euler conditions imply that along the optimal path

pt = k + λt

λt = δλt+1g
′
t

where pt is the market price and g′t is the marginal yield of
resource stock retained in period t.
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• Thus, the market price of the harvested resource must
cover both the shadow price of the unharvested resource
and the marginal cost of harvesting it.

• Moreover, the current value of one unit of the resource
equals the discounted value of its yield in the following
period.
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Steady-State

• The steady-state resource stock s∗, harvest q∗, and
shadow price λ∗ must satisfy the Euler and state
stationarity conditions

p(q∗) = k + δλ∗g′(s∗ − q∗)

λ∗ = δλ∗g′(s∗ − q∗)

s∗ = g(s∗ − q∗).

• These conditions imply g′(s∗ − q∗) = 1 + ρ.
• That is, in steady-state, the marginal rate of growth of
resource stock equals the discount rate.
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Numerical Solution

• The collocation method calls for the value function to be
approximated by a linear combination of n judiciously
chosen basis functions ϕj :

V (s) ≈
n∑

j=1

cjϕj(s).

• The n coefficients cj are fixed by requiring the value
function approximant to satisfy the Bellman equation at n
judiciously chosen nodes si.
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This requires solving the n nonlinear collocation equations

n∑
j=1

cjϕj(si) = max
0≤q≤si


∫ q

0
p(ξ)dξ − kq + δ

n∑
j=1

cjϕj(g(si − q))

 ,

i = 1, 2, . . . , n, for the n unknown coefficients cj , j = 1, 2, . . . , n.
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Parametric Example

• Open and run CompEcon demo program dp/08 Public
Renewable Resource Model.

• This demo solves the renewable resource model assuming

• p(q) = q−γ , γ = 0.5;
• g(s) = αs− 0.5βs2, α = 4, β = 1;
• k = 0.2, δ = 0.9.

• The value function is approximated by a linear
combination of n = 8 Chebychev polynomial basis
functions on [6, 9].
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Parametric Analysis

• The steady-state stock and harvest are 7.38 and 4.49,
respectively.

• How do these values change if ...
• planner discounts future less, δ = 0.95? 7.45 & 4.50.
• climate change cuts α and β in half? 2.77 & 0.99.
• cost of harvest doubles? No change.

• How would you revise the model and code to allow for a
logistic growth function?
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Model 5:

Private Nonrenewable Resource
Management

Jupyter notebook:
dp/09 Private Nonrenewable Resource

Management.ipynb



Private Nonrenewable Resource Management

• A mine owner begins each period t with a predetermined
stock of ore st, of which he will extract and sell a quantity
qt at the market price pt = p(qt).

• The total cost of extraction is given by

Ct =

∫ st

st−qt

k(s)ds

where k(s) is the marginal cost of extracting one unit of
ore when the stock is s (k′ < 0).

• Given the current stock of ore is s0, what extraction policy
maximizes the value of the mine?
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Formulation

This is an infinite-horizon, deterministic model with the
following structural features

• One continuous state variable, ore stock

st ∈ [0, s0].

• One continuous action variable, ore extracted and sold

qt ∈ [0, st].
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• The reward is current profit

p(qt)qt −
∫ st

st−qt

k(s)ds.

where p > 0, p′ < 0, k > 0, k′ < 0, and
k(s0) < p(0) < k(0) < ∞.

• State transitions are governed by

st+1 = st − qt.
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Bellman Equation

The value of the mine, given it contains a stock of ore s,
satisfies the Bellman equation

V (s) = max
0≤q≤s

{
p(q)q −

∫ s

s−q
k(ξ)dξ + δV (s− q)

}
.
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Euler Conditions

• The Euler conditions take the form of a complementarity
condition

µ ≡ p(q) + p′(q)q − k(s− q)− δλ(s− q)

q ≥ 0 ⊥ µ ≤ 0.

λ(s) = k(s− q)− k(s) + δλ(s− q)

where µ is the longrun marginal profit of extraction.
• It is optimal to abandon the mine if k(s) > p(0), that is, if
the marginal cost of extraction exceeds the maximum
price anyone would pay.

• The abandonment point is thus s∗, where k(s∗) = p(0).

93



• Until such time that the mine is abandoned,

pt + p′tqt = λt + kt+1

λt − δλt+1 = kt+1 − kt,

where kt is the marginal cost of extraction at the
beginning of period t.

• That is, the marginal revenue of extracted ore will equal
the shadow price of unextracted ore plus the marginal
cost of extraction.

• Also, the present-valued shadow price of unextracted ore
falls at the rate at which the marginal cost of extraction
rises.
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Numerical Solution

• The collocation method calls for the value function to be
approximated by a linear combination of n judiciously
chosen basis functions ϕj :

V (s) ≈
n∑

j=1

cjϕj(s).

• The n coefficients cj are fixed by requiring the value
function approximant to satisfy the Bellman equation at n
judiciously chosen nodes si.
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This requires solving the n nonlinear collocation equations

n∑
j=1

cjϕj(si) = max
0≤q≤si

p(q)q −
∫ si

si−q
k(ξ)dξ + δ

n∑
j=1

cjϕj(si − q)

 ,

i = 1, 2, . . . , n, for the n unknown coefficients cj , j = 1, 2, . . . , n.
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Parametric example

• Open and run CompEcon demo program dp/09 Private
Non-Renewable Resource Model.

• This demo solves the nonrenewable resource model
assuming

• p(q) = a1 − a2q, a1 = 5, a2 = 0.8;
• k(ξ) = b1 − b2ξ, b1 = 7, b2 = 1;
• s0 = 10, δ = 0.9.

• The value function is approximated by a linear
combination of n = 101 cubic spline basis functions on
[0, 10].
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Parametric Analysis

• The abandonment point is 2.
• How does this value change if ...

• owner discounts future less, δ = 0.95? No change.
• demand rises, i.e., a1 rises to 7? 1.
• government imposes $2 tax on extraction?4.

• How would you revise the model and code if demand were
stochastic?
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Model 6:

Water Resource Management
Jupyter notebook:

dp/10 Water Resource Management.ipynb



Water Resource Management

• Water from a reservoir is used for irrigation and
recreation.

• Irrigation in spring benefits farmers, but reduces the
reservoir level in summer, damaging recreational users.

• Each year t begins in spring with a predetermined stock of
water st in the reservoir, of which a quantity qt is released
for irrigation and the remainder st − qt retained, yielding
farmer and recreational user benefits F (qt) and U(st − qt),
respectively.

• Reservoir levels are replenished by serially i.i.d rainfalls ϵ
during the winter.

• What irrigation policy maximizes the sum of current and
expected future farmer and recreational user benefits?
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Formulation

This is an infinite-horizon, stochastic model with the following
structural features:

• One continuous state variable, reservoir level

st ∈ [0,∞).

• One continuous action variable, quantity of water
released for irrigation

qt ∈ [0, st].
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• The reward is total social benefits

F (qt) + U(st − qt)

where F ′ > 0, F ′′ < 0, U ′ > 0, U ′′ < 0, and
F ′(0) = U ′(0) = ∞.

• State transitions are governed by

st+1 = st − qt + ϵt+1.
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Bellman Equation

The social value of the reservoir, given that it contains s units
of water at the beginning of the year, satisfies the Bellman

equation

V (s) = max
0≤q≤s

{F (q) + U(s− q) + δEϵV (s− q + ϵ)} .
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Euler Conditions

• By assumptions, the constraints on q will never bind at an
optimum, implying that the shadow price of water in the
reservoir λ(s) must satisfy the Euler conditions

0 = F ′(q)− U ′(s− q)− δEϵλ(s− q + ϵ)

λ(s) = U ′(s− q) + δEϵλ(s− q + ϵ).

• The Euler conditions imply that along the optimal path

λt = F ′
t = U ′

t + δEtλt+1

where F ′
t and U ′

t are the marginal farmer and recreational
user benefits in year t, respectively.
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• Thus, on the margin, the benefit received by farmers this
year from releasing one unit of water must equal the
marginal benefit received by recreational users this year
from retaining the unit of water plus the benefits of
having that unit available for either irrigation or
recreation the following year.
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Deterministic Steady-State

• The deterministic steady-state reservoir level s∗, irrigation
level q∗, and shadow price λ∗ when rainfall ϵ is fixed at its
mean ϵ̄ must satisfy the Euler and state stationarity
conditions

F ′(q∗) = λ∗

U ′(s∗ − q∗) = (1− δ)λ∗

q∗ = ϵ̄.
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• These conditions imply that the deterministic steady-state
irrigation level and shadow price of water are not affected
by the discount rate.

• The deterministic steady-state reservoir level, however, is
affected by the discount rate.
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Numerical Solution

• The collocation method calls for the value function to be
approximated by a linear combination of n judiciously
chosen basis functions ϕj :

V (s) ≈
n∑

j=1

cjϕj(s).

• The n coefficients cj are fixed by requiring the value
function approximant to satisfy the Bellman equation at n
judiciously chosen nodes si.
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This requires solving the n nonlinear collocation equations

n∑
j=1

cjϕj(si) = max
0≤q≤si

F (q) + U(si − q) + δEϵ

n∑
j=1

cjϕj(si − q + ϵ)

 ,

i = 1, 2, . . . , n, for the n unknown coefficients cj , j = 1, 2, . . . , n.
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Parametric example

• Open and run CompEcon demo program dp/10 Water
Resource Management Model.

• This demo solves the water management model assuming
• F (q) = a1

1+a2
q1+a2 , a1 = 1, a2 = −2;

• U(s− q) = b1
1+b2

(s− q)1+b2 , b1 = 2, b2 = −3;
• ϵ are serially i.i.d. lognormal, mean 1, volatility σ = 0.2;
• δ = 0.9.

• The value function is approximated by a linear
combination of n = 15 Chebychev polynomial basis
functions on [2, 8].

• Rainfall ϵ is discretized using an m = 3 node Gaussian
quadrature scheme.
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Figure 33: Optimal Irrigation Policy
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Figure 36: Bellman Equation Residual
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Parametric Analysis

• The ergodic distribution of the reservoir level has mean
3.76 and standard deviation 0.36.

• How do these values change if ...
• climate change raises mean rainfall by 20%?4.33 & 0.42.
• climate change raises rainfall volatility to 25%?3.79 & 0.45.
• climate change lowers rainfall volatility to 15%?3.74 & 0.27.
• planner discounts future more, δ = 0.85? 3.41 & 0.33.
• planner doubles welfare weight on farmers? 3.21 & 0.34.

• How would you adapt the model and code to allow for
additional fixed demand for residential use at a nearby
town?
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Higher-Dimensional Continuous
Action Models



Model 7:

Monetary Policy
Jupyter notebook:

dp/11 Monetary Policy.ipynb



Monetary Policy

• A central bank wishes to manage the nominal interest rate
so as to stabilize the gross domestic product (GDP) gap
and inflation around specified targets.

• Each period t begins with a predetermined GDP gap st1

and inflation rate st2, yielding a stabilization penalty

L(st) =
1

2
(st − s̄)′Ω(st − s̄)

where st is a 2× 1 vector containing the GDP gap and
inflation rate, s̄ is a 2× 1 vector of targets, and Ω is a 2× 2

constant positive definite matrix of preference weights.

(cont)
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• The GDP gap and inflation rate evolve according to

st+1 = α+ βst + γxt + ϵt+1

where α and γ are 2× 1 constant vectors, β is a 2× 2

constant matrix, and the ϵ are 2× 1 serially i.i.d vectors
with mean 0.

• What monetary policy minimizes the present value of
current and expected future penalties, subject to the
political constraint that nominal interest rate xt be
nonnegative?
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Formulation

This is an infinite-horizon, stochastic model with the following
structural features:

• Two continuous state variables, the GDP gap

st1 ∈ (−∞,∞)

and the inflation rate

st2 ∈ (−∞,∞).

• One continuous action variable, the nominal interest rate

xt ∈ [0,∞).
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• The “reward” is the negative of the weighted squared
deviations

−L(st) = −1

2
(st − s̄)′Ω(st − s̄)

• State transitions are governed by

st+1 = α+ βst + γxt + ϵt+1
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Bellman Equation

The sum of current and expected future rewards satisfies the
Bellman equation

V (s) = max
x≥0

{−L(s) + δEϵV (α+ βs+ γx+ ϵ)} .
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Euler Conditions

• One cannot assume a priori that the nonnegativity
constraint on the nominal interest rate will be nonbinding
in all states.

• As such, the shadow price function λ(s) is characterized
by the Euler complementarity conditions

µ ≡ δγ′Eϵλ(g(s, x, ϵ))

x ≥ 0 ⊥ µ ≤ 0

λ(s) = −Ω(s− s̄) + δβ′Eϵλ(g(s, x, ϵ))

where µ is the expected longrun marginal “reward”.
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• The Euler conditions imply that along the optimal path

xt ≥ 0 ⊥ δγ′Etλt+1 ≤ 0

• That is, in any period, the nominal interest rate is reduced
until either the expected longrun marginal reward or the
nominal interest rate is driven to zero.
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Numerical Solution

• The collocation method calls for the value function to be
approximated by a linear combination of n judiciously
chosen basis functions ϕj :

V (s) ≈
n∑

j=1

cjϕj(s).

• The n coefficients cj are fixed by requiring the value
function approximant to satisfy the Bellman equation at n
judiciously chosen nodes si.
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This requires solving the n nonlinear collocation equations

n∑
j=1

cjϕj(si) = max
x≥0

−L(si) + δEϵ

n∑
j=1

cjϕj(α+ βsi + γx+ ϵ)

 ,

i = 1, 2, . . . , n, for the n unknown coefficients cj , j = 1, 2, . . . , n.

131



Parametric example

• Open and run CompEcon demo program dp/11
Monetary Policy Model.

• This demo solves the monetary policy model assuming
the ϵ are serially i.i.d. bivariate normal with mean 0 and
variance matrix Σ, with δ = 0.9 and

s̄ =

[
1

0

]
Ω =

[
1 0

0 1

]

α =

[
0.9

−0.1

]
β =

[
−0.5 0.2

0.3 −0.4

]

γ =

[
−0.1

0.0

]
Σ =

[
0.08 0.00

0.00 0.08

]
.

(cont)
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• The value function is approximated by a linear
combination of n = 900 = 30× 30 bivariate Chebychev
polynomial basis functions on [−2,−3]× [2, 3].

• The shock vector ϵ is discretized using an m = 9 = 3× 3

node bivariate Gaussian quadrature scheme.
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Figure 40: Optimal Monetary Policy
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Figure 45: Simulated and Expected Nominal Interest Rate
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Parametric Analysis

• The ergodic distribution of the nominal interest rate has
mean 0.27 and standard deviation 0.73.

• How do these values change if ...
• variance of the shocks double?0.54 & 1.21.
• variance of the shocks disappear?0.01 & 0.01.
• GDP gap target is set to 0?8.47 & 1.68.

• How would you adapt the model and code to allow for
penalties for excessive nominal interest rates?
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