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Introduction



• We now begin our study of dynamic economic models.
• Dynamic economic models often present complications
rarely encountered together in other scientific models:
1. humans are capable of assessing how their actions today
will affect them in the future.

2. many aspects of human behavior are unpredictable.
3. the predictable component of human behavior is often
complex.

• Thus, most useful dynamic models in economics are
future-looking, stochastic, and highly nonlinear.
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• The complications inherent in forward-looking, stochastic,
nonlinear models make it impossible to obtain
closed-form solutions to all but a small number of
dynamic economic models.

• However, advances in computers now make it possible for
economists to analyze a broad range of analytically
insoluble dynamic models using numerical methods.
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We examine three classes of discrete time dynamic economic
models:

• dynamic decision making by a single economic agent
• dynamic decision making by multiple economic agents
• dynamic equilibrium models of decentralized decision
making by many individuals
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Examples of dynamic decision making by single economic
agents involving discrete or mixed actions:

• timber stand owner deciding whether to clearcut his stand
• producer deciding whether to replace a physical asset
• capitalist deciding whether to enter or exit an industry
• unemployed worker deciding whether to accept a job offer
• financial investor deciding whether to exercise a put
option

• borrower deciding whether to default on a loan
• agent deciding whether to make a bank transaction
• subsistence household deciding how many children to
have
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Examples of dynamic decision making by single economic
agents involving pure continuous actions:

• individual deciding how much to consume and save
• planner deciding how much of a renewable resource to
harvest

• mine owner deciding how much ore to extract
• reservoir authority deciding how much water to release
• central bank attempting to stabilize the economy
• entrepreneur planning production, investment, and
inventory

• agricultural producer managing a livestock enterprize
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Examples of dynamic decision making involving multiple
economic agents:

• capacity expansion in an oligopolistic market
• smallholder income risk-sharing arrangements
• national grain marketing boards competing on world
markets
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Examples of dynamic decentralized economic behavior:

• asset returns in a pure exchange economy
• futures markets for primary commodities
• government commodity price stabilization program
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Markov Decision Models



Structure

The discrete time Markov decision model has this structure:

• At the beginning of every period t, an agent observes the
pre-determined state of an economic process st, takes an
action xt, and earns a reward ft(st, xt) that depends on
the state and action.

• The state of the economic process in period t+ 1 will
depend on the state and action taken in period t and a
purely exogenous random shock ϵt+1 that is realized after
action is taken in period t:

st+1 = gt(st, xt, ϵt+1).

• The agent seeks to maximize the present value of current
and expected future rewards over a time horizon T ,
discounted at a per-period rate ρ.
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State Space

• The state space S enumerates the states attainable by the
economic process.

• A continuous state model possesses state variables
whose ranges are intervals of the real line.

• A discrete state model possesses state variables whose
ranges are finite.

• A mixed state model possesses both continuous and
discrete state variables.
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Action Space

• The action space X(s) enumerates the actions that may
be taken by the agent when the economic process is in
state s.

• A continuous action model possesses action variables
whose ranges are intervals of the real line.

• A discrete action model possesses action variables whose
ranges are finite.

• A mixed action model possesses both continuous and
discrete action variables.
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Reward Function

• The reward function f : S ×X 7→ ℜ gives the reward
earned in the current period in terms of the current state
and action.

Transition Function

• The transition function g : S ×X × Ω 7→ S gives next
period’s state in terms of the current state and action and
possibly a random shock realized after the decision is
made.
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Time Horizon

• A discrete time Markov decision model may have a finite
horizon (T <∞) or an infinite horizon (T =∞).

• If the horizon is finite, one must specify a terminal value
describing a final reward or “salvage” value earned by the
agent in period T + 1 as a function of the state in period
T + 1, after the final decision is taken in period T .
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Model Formulation

To fully specify a Markov decision model, one must clearly
identify

• The state variables and state space
• The action variables and action space
• The reward function
• The transition function
• The time horizon and, if finite, the terminal value
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Bellman Equation



Optimal Policy

Given a discrete time Markov decision model, an optimal
policy is a sequence of rules {x∗t } that prescribe the action
x = x∗t (s) that the agent must take in period t if the process is
in state s in order to maximize the present value of current
and expected future rewards.
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Principle of Optimality

The discrete time Markov decision problem may be analyzed
using Bellman’s Principle of Optimality, which was articulated
by Richard Bellman in 1957 as follows:

“An optimal policy has the property that, whatever the
initial state and decision are, the remaining decisions
must constitute an optimal policy with regard to the
state resulting from the first decision.”
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Dynamic Programming

• Bellman’s Principle of Optimality motivates a strategy for
solving dynamic decision models called dynamic
programming

• Dynamic programming is superior to alternative
approaches to dynamic optimization because, in a unified
framework, it can readily handle

• deterministic and stochastic models
• discrete and continuous time models
• discrete and continuous state models
• discrete and continuous action models
• models with constraints

• Dynamic programming introduces the concept of the
value function and characterizes it as the solution to a
functional equation known as The Bellman Equation.
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The Value Function

• Let Vt(s) denote the maximum attainable present value of
current and expected future rewards, given the economic
process is in state s in period t.

• We call Vt : S 7→ ℜ the period-t value function.
• The value functions are unknown a priori and must be
derived from the underlying model.
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The Bellman Equation

The Principle of Optimality implies that the value functions Vt

must satisfy the Bellman equation

Vt(s) = max
x∈X(s)

{ft(s, x) + δEtVt+1(gt(s, x, ϵ))}, s ∈ S.

where δ = 1
1+ρ is called the discount factor.
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• The Bellman equation is a recursive functional equation.
• It is a functional equation because the unknowns, the
value functions Vt, are functions, not vectors in ℜn.

• It is recursive because Vt is defined in terms of Vt+1.
• The Bellman equation compactly captures the
fundamental tradeoff that a rational, future-regarding,
dynamically optimizing agent must make between
immediate rewards ft(st, xt) and expected future rewards
δEtVt+1(st+1).
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Stationarity

• An infinite-horizon discrete time Markov decision model is
stationary if the reward function, transition function, and
shock distributions are independent of time t.

• An infinite-horizon discrete time Markov decision model is
stationary, neither the value function nor the optimal
policy will depend on time t.

• In this case, the Bellman equation takes the form of a
functional fixed-point equation whose single unknown is
the stationary value function V :

V (s) = max
x∈X(s)

{f(s, x) + δEϵV (g(s, x, ϵ))}, s ∈ S.

• It is a functional fixed-point equation because it defines
the unknown value function V in terms of itself.
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Existence of Solution

By the Contraction Mapping Theorem, the Bellman equation of
a stationary infinite-horizon discrete time Markov decision
model possesses an unique solution if the discount factor δ is
less than one and the reward function f is bounded.
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Collocation Method



• We now show how to solve Bellman equations via
collocation.

• For simplicity, we limit our introductory discussion to
infinite-horizon models with a continuous
one-dimensional state space.

• However, the strategy presented generalizes to
finite-horizon models and more general state spaces.
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• To compute an approximate solution to the Bellman
equation via collocation:

• Approximate the value function by a linear combination of
n known basis functions ϕ1, ϕ2, . . . , ϕn

V (s) ≈
n∑

j=1

cjϕj(s)

and fix the basis function coefficients c1, c2, . . . , cn by
requiring the value function approximant to satisfy the
Bellman equation, not at all possible states, but rather at
n judiciously chosen collocation nodes s1, s2, . . . , sn in S.
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• Collocation replaces the Bellman equation with a system
of n nonlinear equations

n∑
j=1

cjϕj(si) = max
x
{f(si, x) + δEϵ

n∑
j=1

cjϕj(g(si, x, ϵ))}

i = 1, 2, . . . , n in n unknowns, cj , j = 1, 2, . . . , n.
• The nonlinear equation system may be compactly
expressed in vector form as the collocation equation

Φc = v(c)

whose unknown is the basis coefficient vector c.
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• Here, Φ is the n× n matrix whose typical element

Φij = ϕj(si)

is the jth basis function evaluated at the ith node.
• And v is the function from ℜn to ℜn whose typical element

vi(c) = max
x∈X(si)

{f(si, x) + δEϵ

n∑
j=1

cjϕj(g(si, x, ϵ))},

is the optimal value of the maximization problem
embedded in the Bellman equation at the ith collocation
node, replacing the value function with its approximant.
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• The collocation equation may be solved using a variety of
nonlinear equation solution methods.

• For example, one may write the collocation equation as a
fixed-point problem

c = Φ−1v(c)

and solve for c using function iteration

c← Φ−1v(c).
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• Alternatively, one may write the collocation equation as a
rootfinding problem

Φc− v(c) = 0

and solve for c using Newton’s method

c← c− [Φ− v′(c)]−1[Φc− v(c)].

• Here, v′(c) is the n× n Jacobian of v at c, whose typical
element may be computed using the Envelope Theorem:

v′ij(c) =
∂vi
∂cj

(c) = δEϵϕj(g(si, xi, ϵ)).

• Can also use Broyden’s method instead of Newton’s
method.
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• The accuracy of the computed approximate solution is
assessed by inspecting the residual.

• For a given basis coefficient vector c, the residual is a
function of the state variable s:

Rc(s) ≡
n∑

j=1

cjϕj(s)−max
x
{f(s, x) + δEϵ

n∑
j=1

cjϕj(g(s, x, ϵ))}

• If the approximant were exact, the residual would be zero
everywhere.

• However, in general, the residual will be nonzero, except at
the collocation nodes, where it is zero by construction.

• The accuracy of the approximant is measured by how
much the residual differs from zero at non nodal states.
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• Discussion above is general, but obscures some practical
issues.

• First, the state and action spaces could be
multi-dimensional and involve a mixture of continuous
and discrete variables.

• Second, evaluation of v requires a finite-dimensional
nonlinear maximization operation, about which little has
been said.

• Third, solving the collocation equation requires an initial
guess for the unknown coefficients.

• Mixed multi-dimensional state and action spaces and
finite-dimensional nonlinear maximization are handled in
a straightforward fashion by the CompEcon Toolbox.

• But algebra is cumbersome and requires
multi-dimensional indexing, which we have chosen to
avoid for clarity.
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• When applying the collocation method, the analyst faces a
number of practical decisions.

• First, choose basis functions and collocation nodes.
• Second, choose algorithm for solving the collocation
equation.

• Third, choose numerical quadrature technique, if needed.
• Fourth, provide an initial guess for the basis coefficients.
• A careful analyst may try different basis-node families,
different degrees of discretization, different solution
algorithms, and different initial guesses for the
coefficients to assure robustness of results.

• A careful analyst always, always, always checks the
residual!
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• The collocation method suffers from the curse of
dimensionality.

• Specifically, the computational effort required grows
exponentially with the dimension of the state space.

• For example, if the state space has d continuous
dimensions and you choose n basis functions for each
state variable dimension, then the collocation equation
has nd single equations and the same number of
unknowns.

• For this reason, in practice, the main limitation to solving
dynamic optimization problems numerically is keeping
the state dimension manageable.
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Discrete Action Examples



Timber Harvesting

• At the beginning of each period t, a timber stand owner
observes the biomass of his stand st and must decide
whether to harvest and sell it, or allow it to grow for
another period.

• The revenue received per unit of harvested biomass is a
constant p and the cost of clearcutting and replanting is a
constant κ.

• A stand with biomass st that is not clearcut in period t will
have biomass st+1 = h(st) the following period; a stand
that is clearcut will have biomass st+1 = h(0) > 0.

• What clearcutting policy maximizes the value of the stand?
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Formulation

This is an infinite-horizon, deterministic model with the
following structural features:

• One continuous state variable, stand biomass

st ∈ [0, s̄],

where s̄ is the maximum attainable biomass.
• One binary action variable, the clearcut decision

jt =

1, clearcut stand
0, otherwise.
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• The reward is current profit

πt =


0, if jt = 0

pst − κ, if jt = 1

where p > 0 and κ > 0.
• State transitions are governed by

st+1 =


h(st), if jt = 0

h(0), if jt = 1

where h(0) > 0, h′ > 0 and h′′ < 0 on s ∈ [0, s̄], h(s̄) = s̄.
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Bellman Equation

The value of a stand with biomass s satisfies the Bellman
equation

V (s) = max{δV (h(s)), ps− κ+ δV (h(0)))}.

Here,

• If owner does not clearcut the stand, she earns no profit
and begins the following period with a stand of biomass
h(s) worth V (h(s)).

• If owner clearcuts the stand, she earns profit ps− κ and
begins the following period with a stand of biomass h(0)
worth V (h(0)).
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Alternatively, the Bellman equation can be written

V (s) = max{V0(s), V1(s)}

where
V0(s) ≡ δV (h(s))

V1(s) ≡ ps− κ+ δV (h(0))

are the action-contingent value functions, which give the
values contingent on not clearcutting and clearcutting,
respectively.
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• The stand owner clearcuts the stand if

V1(s) > V0(s)

or, equivalently, if

ps− κ > δ(V (h(s))− V (h(0))).

• That is, the owner clearcuts and replants if the net
revenue this period exceeds the capital loss in stand
value.

• A myopic owner that clearcuts simply if net revenue is
positive will clear cut sooner than he should.

• The critical biomass s∗ at which a stand should be
clearcut is characterized by V0(s

∗) = V1(s
∗).
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Numerical Solution

• The collocation method calls for the value function to be
approximated by a linear combination of n basis functions
ϕk :

V (s) ≈ V̂ (s) ≡
n∑

k=1

ckϕk(s).

• The n coefficients ck are fixed by requiring the value
function approximant to satisfy the Bellman equation at n
judiciously chosen nodes si.
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This requires solving the n collocation equations
n∑

k=1

ckϕk(si) = max{δ
n∑

k=1

ckϕk(h(si)), psi−κ+ δ

n∑
k=1

ckϕk(h(0))},

i = 1, 2, . . . , n, for the n unknown basis function coefficients ck ,
k = 1, 2, . . . , n .

40



Example 1:

Timber Harvesting, linear
approximation



• Let us solve the model numerically for the following
parameterization:

• h(s) = s+ γ(s̄− s), s̄ = 0.5, γ = 0.1

• p = 1

• κ = 0.2

• δ = 0.9

41



Computing a Linear Approximation by “Hand”

• To better understand the collocation method, let us begin
by constructing a linear approximation to the value
function:

V (s) ≈ V̂ (s) ≡ c1 + c2s.

• Given two collocation nodes s1 and s2, the two collocation
equations become

c1 + c2s1 = max{δ(c1 + c2h(s1)) ps1 − κ+ δ(c1 + c2h(0))}

c1 + c2s2 = max{δ(c1 + c2h(s2)) ps2 − κ+ δ(c1 + c2h(0))}.
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• If we choose s1 = 0.2 and s2 = 0.4, insert all parameter
values, and simplify, then

c1 + 0.2c2 = max{0.9c1 + 0.207c2 0.0 + 0.9c1 + 0.225c2}

c1 + 0.4c2 = max{0.9c1 + 0.369c2 0.3 + 0.9c1 + 0.405c2}.

• Although cumbersome, these two nonlinear equations can
be solved explicitly for c1 and c2, yielding the value
function approximant

V̂ (s) ≡ 0.0387 + 0.5525s.
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• One can then derive approximants for the conditional
value functions

V̂0(s) = δV̂ (h(s)) = −0.0597 + 0.4475s

V̂1(s) = ps− κ+ δV̂ (h(0)) = −0.1403 + s.

• Equating the two yields the critical biomass level s∗ = 0.36

at which a stand should be clearcut.
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• Open the Jupyter notebook examdp01, which already
contains the model parameters:

price = 1.0 # price of biomass
kappa = 0.2 # clearcut-replant cost
smax = 0.5 # stand carrying capacity
gamma = 0.1 # biomass growth parameter
delta = 0.9 # discount factor

• The script also already contains some code that generates
graphs and other output.
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To solve the collocation equation in Python,

Step 1: code the growth function

def h(s): return s + gamma*(smax - s)

Step 2: code the value function approximant

def vhat(c, s): return c[0] + c[1]*s

Step 3: code the conditional value function approximants

def vhat1(c,s):
return price*s - kappa + delta * vhat(c,h(0))

def vhat0(c,s):
return delta * vhat(c, h(s))
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Step 4: and code the residual

def resid(c,s=snodes):
return vhat(c,s) - np.maximum(vhat0(c,s),vhat1(c,s))

Step 5: Solve the collocation equation with two collocation
nodes

snodes = np.array([0.2, 0.4])
cc = NLP(resid).broyden(np.zeros(2))

Step 6: Compute the critical biomass

scrit = NLP(lambda s: vhat0(cc,s)-vhat1(cc,s)). \
broyden(0.0)[0]

Step 7: Run the script.
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• The Bellman equation residual, expressed as a percent of
the underlying value, reaches magnitudes of around 35
percent, which is unacceptably high.
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Example 2:

Timber harvesting, cubic spline
approximation



Let us now open the Jupyter notebook examdp02 so that we
solve the model using 200 cubic spline basis functions.

Step 1: code the growth function

def h(s): return s + gamma*(smax - s)

Step 2: code the value function approximant

ns = 200
vhat = BasisSpline(ns,0,smax,k=3)

Step 3: code the conditional value function approximants

def vhat1(s):
return price*s - kappa + delta * vhat(h(0))

def vhat0(s):
return delta * vhat(h(s))
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Step 4: and code the residual

def resid(c,s=vhat.nodes):
vhat.c = c
return vhat(s) - np.maximum(vhat0(s), vhat1(s))

Step 5: Solve the collocation equation

cc = NLP(resid).broyden(vhat.c)

Step 6: Compute the critical biomass

scrit = NLP(lambda s: vhat0(s)-vhat1(s)).broyden(0.0)[0]

Step 7: Run the script.
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• The Bellman equation residual using 200 cubic spline
basis functions reaches magnitudes of around 0.02
percent, four orders of magnitude better than with two
basis functions.

• The computed critical biomass level at which a stand
should be clearcut is s∗ = 0.31.
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Parametric Analysis

• The critical biomass level and rotation cycle are 0.31 and
10 periods, respectively.

• How do these values change if…
• market price falls by half?0.44, 21.
• unit tax of 0.2 is imposed on sale of timber?0.35, 12.
• cost of clearcutting and replanting falls by half?0.21, 6.
• tax of 0.1 is imposed on clearcutting?0.38, 14.

• How would you adapt the model and code to allow for a
probability q that a fire could destroy the timber stand
each period?
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Asset Replacement

• At the beginning of each period t, a manufacturer
observes the age of an asset at and must decide whether
to replace it with a new one.

• An asset that is a periods old produces q(a) units of
output.

• Safety regulations require that the asset be replaced once
it reaches an age of A periods.

• The net cost of liquidating an old asset and purchasing a
new one is a constant κ.

• The asset earns a net profit pt per unit of output in period
t, which evolves according to pt+1 = h(pt, ϵt+1) where the ϵ

are serially i.i.d. shocks.
• What replacement policy maximizes firm profits?
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Formulation

This is an infinite-horizon, stochastic model with the following
structural features:

• One continuous state variable, net unit profit

pt ∈ (0,∞),

and one discrete state variable, asset age

at ∈ {1, 2, 3, . . . , A}.

• One binary action variable, the replacement decision

jt =


1 replace asset

0 otherwise,

which is subject to the constraint that jt = 1 if at = A.
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• The reward is current profit

πt =


ptq(at), if jt = 0

ptq(0)− κ, if jt = 1.

• State transitions are governed by

pt+1 = h(pt, ϵt+1)

at+1 =


at + 1, if jt = 0

1, if jt = 1.
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Bellman Equation

The value of owning an asset of age a, given net unit profit p,
satisfies the Bellman equation

Va(p) = max{Va0(p), Va1(p)}

where
Va0(p) ≡ pq(a) + δEϵVa+1(h(p, ϵ))

Va1(p) ≡ pq(0)− κ+ δEϵV1(h(p, ϵ))

are the values contingent on keeping and replacing an asset of
age a, respectively.
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• If the manufacturer keeps an asset of age a, he earns
pq(a) and begins the following period with an asset that is
one period older and worth Va+1(p̃), where p̃ is the
following period’s net unit profit.

• If he replaces the asset, on the other hand, he earns
pq(0)− κ and begins the following period with an asset
that is one period old and worth V1(p̃).
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• The manufacturer replaces the asset if

p(q(0)− q(a))− κ > δEϵ (Va+1(p̃)− V1(p̃)) ,

that is, if the net revenue this period exceeds the
expected capital loss.

• A myopic manufacturer that replaces the asset simply if
net revenue is positive will replace too soon or too late,
depending on whether the expected capital loss is
positive or negative.

• The critical unit profit contribution p∗a at which an asset of
age a is replaced is characterized by Va0(p

∗
a) = Va1(p

∗
a).
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Numerical Solution

• The collocation method calls for the value function to be
approximated by a linear combination of n basis functions
ϕk :

Va(p) ≈ V̂a(p) ≡
n∑

k=1

cakϕk(p).

• The A× n coefficients cak are fixed by requiring the value
function approximants to satisfy the Bellman equation at
n judiciously chosen nodes pi.
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This requires solving the A×n nonlinear collocation equations

V̂a(pi) ≡ max{V̂a0(pi) V̂a1(pi)},

a = 1, 2, . . . , A, i = 1, 2, . . . , n, where

V̂a0(pi) = pi q(a) + δEϵV̂a+1(h(pi, ϵ))

V̂a1(pi) = pi q(0)− κ+ δEϵV̂1(h(pi, ϵ))

for the A× n basis coefficients cak , a = 1, 2, . . . , A,
k = 1, 2, . . . , n.
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Example 3:

Asset replacement



• Open and run CompEcon demo program demdp02.
• This demo solves the asset replacement model assuming

• q(a) = α0 + α1a+ α2a
2, α0 = 50, α1 = −2.5, α2 = −2.5;

• h(p, ϵ) = p̄+ γ(p− p̄) + ϵ, p̄ = 1, γ = 0.5;
• ϵ serially i.i.d. normal, mean 0, standard deviation σ = 0.15;
• A = 6, κ = 40, δ = 0.9.

• The value function is approximated by a linear
combination of n = 200 cubic spline basis functions
defined on the interval [0, 2].

• The unit profit contribution shock ϵ is discretized using an
m = 5 node Gaussian quadrature scheme.
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• The critical unit profit contributions at which the asset
should be replaced are 1.50, 0.66, 0.38, and 0.25, for assets
of age 2, 3, 4, and 5, respectively (an asset of age 1 is never
replaced).

• The critical unit profit contributions p∗a were computed
numerically by solving V̂a0(p

∗
a) = V̂a1(p

∗
a).
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Figure 8: Bellman Equation Residuals
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Parametric Analysis

• The average asset age over the first fifty periods is 2.01.
• How does this value change if…

• replacement cost falls by half? 1.61.
• longrun mean profit contribution rises by 20%? 1.99.
• manufacturer discounts the future less (δ = 0.95)? 2.00.

• How would you adapt the model and code to allow for
investing in maintenance that enhances asset
productivity?

70



Industry Entry and Exit

• At the beginning of each period t, a firm observes its
potential profit over the current period pt, which may be
negative, and must decide whether to operate.

• The firm faces no fixed costs or shutdown costs, but incurs
a startup cost κ if it reopens after a period of inactivity.

• Short-run potential profit evolves according to
pt+1 = h(pt, ϵt+1) where the ϵ are serially i.i.d shocks.

• What entry-exit policy maximizes the value of the firm?
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Formulation

This is an infinite-horizon, stochastic model with the following
structural features:

• One continuous state variable, potential profit

pt ∈ (−∞,∞),

and one binary state variable, the operational status of
the firm last period

it =

1 active
0 idle.

• One binary action variable, the operational status of the
firm this period

jt =

1 active
0 idle. 72



• The reward is current net profit

πt = ptjt − κ(1− it)jt.

• State transitions are governed by

pt+1 = h(pt, ϵt+1)

it+1 = jt.
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Bellman Equation

The value of the firm, given operational status i and potential
profit p, satisfies the Bellman equation

Vi(p) = max{Vi0(p), Vi1(p)}

where
Vi0(p) ≡ δEϵV0(h(p, ϵ))

Vi1(p) ≡ p− κ(1− i) + δEϵV1(h(p, ϵ))

are the values contingent on being idle and active this period,
respectively.
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• An idle firm earns no profit and begins the following
period with a value V0(p̃), where p̃ is the following period’s
potential profit.

• An active firm, on the other hand, earns profit p, incurring
a startup cost κ if it was idle the preceding period, and
begins the following period with a value V1(p̃).

• The critical potential profits at which an idle firm reopens,
p∗0, and at which an active firm shuts down, p∗1, are
characterized by Vi0(p

∗
i ) = Vi1(p

∗
i ), for i = 0, 1.
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• An idle firm re-opens if

p+ V ∗(p) > κ,

and an active firm remains open if

p+ V ∗(p) > 0,

where

V ∗(p) ≡ δEϵ (V1(h(p, ϵ))− V0(h(p, ϵ))) > 0,

is the option value of being active.
• Since V ∗(p) > 0, an idle firm may reopen and an active
firm may remain open, even though it loses money in the
shortcut.
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Numerical Solution

• The collocation method calls for the value function to be
approximated by a linear combination of n basis functions
ϕk :

Vi(p) ≈ V̂i(p) ≡
n∑

k=1

cikϕk(p).

• The 2× n coefficients cik are fixed by requiring the value
function approximants to satisfy the Bellman equation at
n judiciously chosen nodes pk .
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This requires solving the 2× n nonlinear collocation equations

V̂i(pk) ≡ max{V̂i0(pk) , V̂i1(pk)},

i = 0, 1, k = 1, 2, . . . , n, where

V̂i0(pk) = δEϵV̂0(h(pk, ϵ))

V̂i1(pk) = pk − κ(1− i) + δEϵV̂1(h(pk, ϵ)),

for the 2× n basis coefficients cik , i = 0, 1, k = 1, 2, . . . , n.

78



Example 4:

Industry entry and exit



• Open and run CompEcon demo program demdp03.
• This demo solves the industry entry-exit model assuming

• h(p, ϵ) = p̄+ γ(p− p̄) + ϵ, p̄ = 1, γ = 0.7;
• ϵ serially i.i.d. normal, zero mean, standard deviation σ = 1;
• κ = 10, δ = 0.9.

• The value function is approximated by a linear
combination of n = 250 cubic spline basis functions on
[−20, 20].

• The profit shock ϵ is discretized using an m = 5 node
Gaussian quadrature scheme.

79



An idle firm reopens at p∗0 = 2.10 and an active firm shuts
down at p∗1 = −2.30.
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Figure 9: Conditional Value Functions and Critical Short-Run Potential Profits
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The ergodic probability of operation, that is, the percentage of
periods the firm is active in the longrun, is 92%.

0 10 20 30 40 50
Period

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

Pr
ob

ab
ilit

y
Probability of Operation

Figure 10: Probability of operation 81



20 15 10 5 0 5 10 15 20
Potential Profit

1

0

1

2

3
Pe

rc
en

t R
es

id
ua

l

Bellman Equation Residual

close
open

Figure 11: Bellman Equation Residuals
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Parametric Analysis

• How does the ergodic probability of operation change if…
• longrun mean profit falls in half? 51%.
• cost of reopening an idle firm doubles? 89%.
• standard deviation of the profit shock doubles? 65%.

• How would you adapt the model and code to allow for
shutdown costs and fixed costs that depend on whether
firm is active or inactive?
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Job Search

• At the beginning of each period t, an infinitely-lived
worker is either employed or unemployed.

• If employed, he must decide whether to continue to work
at the prevailing wage wt or quit and be idle.

• If unemployed, he must decide whether to search for a job
and receive an unemployment benefit u or be idle.

• An idle worker receives neither a wage nor an
unemployment benefit, but enjoys a pure leisure benefit v.

(cont)
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• An unemployed worker who searches for a job will find
one for the following period with probability p0.

• An employed worker who works will keep his job for the
following period with probability p1.

• The wage evolves according to wt+1 = h(wt, ϵt+1) where
the ϵ are serially i.i.d shocks.

• Under what conditions will an employed worker quit and
will an unemployed worker search?
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Formulation

This is an infinite-horizon, stochastic model with the following
structural features:

• One continuous state variable, the prevailing wage

wt ∈ [0,∞),

and one binary state variable, the worker’s employment
status

it =

1 employed
0 unemployed.

• One binary action variable, the activity of the worker this
period

jt =

1 active (work or search)
0 idle.
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• The reward is current benefits

πt = wtitjt + u(1− it)jt + v(1− jt).

• State transitions are governed by

wt+1 = h(wt, ϵt+1)

it+1 =



0 with probability 1, if jt = 0

1 with probability p0, if jt = 1, it = 0

0 with probability 1− p0, if jt = 1, it = 0

1 with probability p1, if jt = 1, it = 1

0 with probability 1− p1, if jt = 1, it = 1
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Bellman Equation

The worker’s expected lifetime benefits, given his employment
status i and prevailing wage w, satisfies the Bellman equation

Vi(w) = max{Vi0(w), Vi1(w)}

where

Vi0(w) ≡ v + δ Eϵ V0(h(w, ϵ))

Vi1(w, s) ≡ wi+ u(1− i) + δEϵ

[
piV1(h(w, ϵ)) + (1− pi)V0(h(w, ϵ))

]
are the values contingent on being idle and active, respectively.

88



• An idle worker earns only leisure benefits and begins the
following period with lifetime prospects V0(w̃), where w̃ is
the following period’s prevailing wage.

• An unemployed active worker earns an unemployment
benefit u and begins the following period with lifetime
prospects V0(w̃) or V1(w̃) with probabilities 1− p0 and p0,
respectively.

• An employed active worker earns a wage w and begins the
following period with lifetime prospects V0(w̃) or V1(w̃)

with probabilities 1− p1 and p1, respectively.
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• The critical wage w∗
0 at which an unemployed worker

searches is characterized by the condition that
V00(w

∗
0) = V01(w

∗
0).

• The critical wage w∗
1 at which an employed worker quits is

characterized by the condition that V10(w
∗
1) = V11(w

∗
1).
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• An unemployed worker searches for a job if

u+ V ∗
0 (w) > v

and an employed worker continues to work if

w + V ∗
1 (w) > v

where

V ∗
i (w) ≡ δpiEϵ

(
V1(h(w, ϵ)))− V0(h(w, ϵ))),

are the option values of being active for an unemployed
worker, i = 0, or an employed worker, i = 1.

• Since V ∗
i (w) > 0, an unemployed worker may search for a

job, even though his leisure benefit exceeds his
unemployment benefit, and an employed worker may
continue working, even though his leisure benefit exceeds
his wage.
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Numerical Solution

• The collocation method calls for the value function to be
approximated by a linear combination of n basis functions
ϕk :

Vi(w) ≈ V̂i(w) ≡
n∑

k=1

cikϕk(w).

• The 2× n coefficients cik are fixed by requiring the value
function approximants to satisfy the Bellman equation at
n judiciously chosen nodes wl.
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This requires solving the 2× n nonlinear collocation equations

V̂i(wl) ≡ max{V̂i0(wl) , V̂i1(wl)},

i = 0, 1, l = 1, 2, . . . , n, where

V̂i0(wl) = v + δEϵV̂0(h(wl, ϵ))

V̂i1(wl) = wli+ u(1− i) + δEϵ

[
piV̂1(h(wl, ϵ)) + (1− pi)V̂0(h(wl, ϵ))

]
,

for the 2× n basis coefficients cik , i = 0, 1, k = 1, 2, . . . , n.
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Example 5:

Job search



• Open and run CompEcon demo program demdp04.
• This demo solves the job search model assuming

• h(w, ϵ) = w̄ + γ(w − w̄) + ϵ, w̄ = 100, γ = 0.4;
• ϵ are serially i.i.d. normal, mean 0, standard deviation
σ = 5;

• u = 90, v = 95, p0 = 0.2, p1 = 0.9, δ = 0.95.

• The value function is approximated by a linear
combination of n = 150 cubic spline basis functions on
[0, 200].

• The wage shock ϵ is discretized using an m = 15 node
Gaussian quadrature scheme.
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• The critical wage at which an unemployed worker will
search is w∗

0 = 93.8.
• The critical wage at which an employed worker will quit is
w∗
1 = 79.4,

• The critical wages were computed numerically by solving
V̂0(w

∗
i , i) = V̂1(w

∗
i , i), for i = 0, 1.
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Figure 12: Conditional Value Functions and Critical Wage, Unemployed vs. Worker
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Parametric Analysis

• The ergodic employment rate is 37%.
• How does this value change if…

• unemployment benefit falls to 80? 100%.
• average wage rate rises 20%? 33%.
• standard deviation of wage shock rises to 8? 42%.
• probability of finding a job when searching rises to 30%?
25%.

• How would you adapt the model and code to allow for a
maximum time limit on unemployment benefits?
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American Option Pricing

• An American put option gives an investor the right, but
not the obligation, to sell a specified asset at a specified
strike price K within a specified number of periods T .

• At the beginning of each period t ≤ T , the investor
observes the price of the underlying asset Pt and must
decide whether to exercise the option, earning a payoff
K − Pt, or to postpone exercise for at least one more
period.

• The log asset price pt = logPt evolves according to
pt+1 = pt + ϵt+1 where the ϵ are serially i.i.d. normal with
mean µ and variance σ2.

• If the investor is risk-neutral, and thus maximizes
expected payoff discounted at the risk-free rate of return,
then how does the critical asset price at which the
investor should exercise the option vary over time?
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Formulation

This is a finite-horizon, stochastic model with the following
structural features:

• One continuous state variable, the log asset price

pt ∈ (−∞,∞).

• One binary action variable, the exercise decision

jt =

1 exercise
0 do not exercise.
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• The reward is the option payoff

πt =

0, if jt = 0

K − exp(pt), if jt = 1.

• State transitions are governed by

pt+1 = pt + ϵt+1
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Bellman Equation

The value of an unexercised option in period t, given the log
asset price p, satisfies the recursive Bellman equation

Vt(p) = max{K − exp(p), δEϵVt+1(p+ ϵ)},

t = 0, 1, 2, . . . T , subject to the terminal condition VT+1 ≡ 0.

101



• If the put option is exercised, the investor earns a
one-time payoff K − exp(p) equal to the difference
between the strike price and the asset price.

• If the put option is not exercised, the investor earns no
payoff and begins the following period with an option
worth Vt+1(p̃), where p̃ is the log asset price the following
period.

• The critical log asset price p∗t at which the option should
be exercised in period t is characterized by
K − exp(p∗t ) = δEϵVt+1(p

∗
t + ϵ).
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Numerical Solution

• The collocation method calls for the time-contingent
value functions to be approximated by linear
combinations of n basis functions ϕk :

Vt(p) ≈ V̂t(p) ≡
n∑

j=1

ctkϕk(p),

t = 0, 1, 2, . . . , T .
• The T + 1× n coefficients ctk are fixed by requiring the
value function approximants to satisfy the Bellman
equation at n judiciously chosen nodes pi.

103



This requires recursively solving the T + 1× n nonlinear
collocation equations

V̂t(pi) = max{K − exp(pi), δEϵV̂t+1(pi + ϵ)},

t = 0, 1, 2, . . . , T , i = 1, 2, . . . , n, subject to the terminal
condition VT+1 ≡ 0.
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The critical asset prices p∗t at which the put option should be
exercised in period t were computed numerically by solving
K − exp(p∗t ) = δEϵV̂t+1(p

∗
t + ϵ).
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Example 6:

American option pricing



• Open and run CompEcon demo program demdp05.
• This demo solves the American put option model
assuming T = 300, K = 1, µ = 0.0001, σ = 0.008, and
δ = 0.9998.

• The value functions are approximated by linear
combinations of n = 500 cubic spline basis functions on
[−1, 1].

• The log price shock ϵ is discretized using an m = 15 node
Gaussian quadrature scheme.
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Parametric Analysis

• The critical exercise price 300 periods from expiration is
0.88.

• How does this value change if…
• price volatility doubles? 0.75.
• price drift doubles? 0.91.
• strike price is $1.10? 0.96.

• How would you adapt the model and code to price a call
option, which gives an investor the right, but not the
obligation, to buy?
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