

Numerical Functional Equation Methods

Randall Romero Aguilar, PhD This draft: October 10, 2018

Universidad de Costa Rica SP6534 - Economía Computacional

Table of contents

- 1. Introduction
- 2. Polynomial Interpolation
- 3. Spline Interpolation
- 4. Additional Considerations
- 5. CompEcon Toolbox
- 6. Functional Equations

Introduction

In many computational economics applications, we need to replace an analytically intractable function $f: \Re^n \mapsto \Re$ with a numerically tractable approximation \hat{f} .

- In some applications, f can be evaluated at any point of its domain, but with difficulty, and we wish to replace it with an approximation \hat{f} that is easier to work with.
- In other applications, f is defined implicitly via a functional equation, but the equation lacks closed-form solution and we wish to compute an approximate solution \hat{f} .

- We first study interpolation, a general strategy for forming a tractable approximation to a function that can be evaluated at any point of its domain.
- Methods for solving functional equations are based on interpolation principles and are studied subsequently.

Interpolation

- Consider a real-valued function f defined on an interval of the real line that can be evaluated at any point of its domain.
- Generally, we will approximate f using a function \hat{f} that is a finite linear combination of n known basis functions $\phi_1, \phi_2, \dots, \phi_n$ of our choosing:

$$f(x) \approx \hat{f}(x) \equiv \sum_{j=1}^{n} c_j \phi_j(x).$$

• We will fix the n basis coefficients c_1, c_2, \ldots, c_n by requiring \hat{f} to interpolate, that is, agree with f, at n interpolation nodes x_1, x_2, \ldots, x_n of our choosing.

The most readily recognizable basis is the monomial basis

$$\phi_0(x) = 1$$

$$\phi_1(x) = x$$

$$\phi_2(x) = x^2$$

$$\vdots$$

$$\phi_n(x) = x^n,$$

which may be used to construct polynomial approximations:

$$f(x) \approx \hat{f}(x) \equiv c_0 + c_1 x + c_2 x^2 + \ldots + c_n x^n$$
.

- As we will shortly see, however, other function bases may be used to approximate functions.
- And there are different ways to choose the interpolation nodes.

 Regardless of how the n basis functions and nodes are chosen, computing the basis coefficients reduces to solving a linear equation:

$$\sum_{i=1}^{n} c_j \phi_j(x_i) = f(x_i), \qquad i = 1, 2, \dots, n.$$

 The interpolation equation can be written in the matrix format

$$\Phi c = y$$

where, for $i=1,2,\ldots,n$ and $j=1,2,\ldots,n$,

$$\Phi_{ij} = \phi_j(x_i)$$
 and $y_i = f(x_i)$

and c is the $n \times 1$ vector of basis coefficients to be determined.

- In theory, an interpolation scheme is well-defined if the basis functions and interpolation nodes are chosen such that the interpolation matrix Φ is nonsingular.
- In practice, however, the interpolation matrix must meet the more stringent requirement that it not be ill-conditioned.
- Otherwise, it will not be possible to compute the basis coefficients accurately.

Ideally, an interpolation scheme should satisfy various conditions.

- It should be theoretically possible to achieve an arbitrarily accurate approximation by increasing the number of basis functions and interpolation nodes.
- It should be possible to solve the interpolation equation quickly and accurately.
- It should be relatively inexpensive to evaluate, differentiate, integrate or otherwise work with the approximation.

- Interpolation schemes differ only in how the basis functions ϕ_j and interpolation nodes x_i are chosen.
- We develop interpolation schemes based on two classes of basis functions:
 - · Orthogonal polynomials
 - · Piecewise polynomial splines

Polynomial Interpolation

Weierstrass Theorem

- The Weierstrass Theorem asserts that any continuous real-valued function can be approximated to an arbitrary degree of accuracy over a bounded interval by a polynomial.
- Specifically, if f is continuous on [a,b] and $\epsilon>0$, then there exists a polynomial p such that

$$\max_{x \in [a,b]} |f(x) - p(x)| < \epsilon.$$

- The Weierstrass theorem motivates the use of polynomials to approximate continuous functions.
- The theorem, however, is not very practical.
- It gives no guidance on how to find a polynomial that provides a desired level of accuracy.
- It does not even tell us what degree polynomial is required.

Naive Polynomial Interpolation

- One way to construct an n^{th} -degree polynomial approximation \hat{f} to a function f over a bounded interval [a,b] is as follows.
- · Write the approximation

$$\hat{f}(x) \equiv \sum_{j=0}^{n} c_j x^j$$

in terms of the monomial basis functions $1, x, x^2, \dots, x^n$.

• Fix the n+1 unknown basis coefficients c_0, c_1, \ldots, c_n by requiring \hat{f} to agree with f at the n+1 equally-spaced interpolation nodes $x_i = a + ih$, where h = (b-a)/n.

Figure 1: Monomial Basis Functions on $\left[0,1\right]$

- This polynomial interpolation scheme, however, suffers from two serious, but distinct problems.
- First, the interpolation matrix is a Vandermonde matrix, which becomes increasingly ill-conditioned as the degree of the interpolating polynomial rises.
- Second, there are functions for which the approximation error explodes as the degree of the interpolating polynomial rises.
- The classic example is Runge's function:

$$f(x) = \frac{1}{1 + 25x^2}, \quad -1 \le x \le 1.$$

Figure 2: Runge's Function

Chebychev Polynomial Interpolation

 Theory asserts that the best way to approximate a continuous function with a polynomial over a bounded interval [a, b] is to interpolate it at the so-called Chebychev nodes:

$$x_i = \frac{a+b}{2} + \frac{b-a}{2} \cos\left(\frac{n-i+0.5}{n}\pi\right), \quad i = 1, 2, \dots, n.$$

- The Chebychev nodes are not evenly spaced and do not include the endpoints of the approximation interval.
- They are more closely spaced near the endpoints of the approximation interval and less so near the center.

Figure 3: Chebychev Nodes on $\left[0,1\right]$

If f is continuous ...

- Rivlin's Theorem asserts that Chebychev-node polynomial interpolation is nearly optimal, that is, it affords an approximation error that is very close to the lowest error attainable with another polynomial of the same degree.
- Jackson's Theorem asserts that Chebychev-node polynomial interpolation is consistent, that is, the approximation error vanishes as the degree of the polynomial increases.

Figure 4: Runge's Function Polynomial Approximation Error

- When the function being approximated is smooth,
 Chebychev node polynomial interpolants typically exhibit errors that oscillate fairly evenly throughout the interval of approximation.
- This feature is called the Chebychev equi-oscillation property.
- Consider the Chebychev interpolant to $\exp(-x)$ on [-1,1].
- The Chebychev interpolant avoids the instability near the interval endpoints exhibited by a uniform node polynomial interpolant because the Chebychev nodes are more concentrated near the endpoints.

Figure 5: Chebychev Polynomial Interpolant Approximation Error for e^{-x}

- Interpolating at the Chebychev nodes offers many advantages.
- However, merely interpolating at the Chebychev nodes does not eliminate ill-conditioning.
- Ill-conditioning stems from the choice of basis functions, not the choice of interpolation nodes.
- Fortunately, there is alternative to the monomial basis that is ideal for expressing Chebychev-node polynomial interpolants.

- The optimal basis for expressing Chebychev-node polynomial interpolants is called the Chebychev polynomial basis.
- The Chebychev polynomials are defined for $z \in [-1,1]$ as

$$T_0(z) = 1$$

$$T_1(z) = z$$

$$T_2(z) = 2z^2 - 1$$

$$T_3(z) = 4z^3 - 3z$$

$$\vdots$$

$$T_j(z) = 2zT_{j-1}(z) - T_{j-2}(z).$$

• They can be defined for arbitrary intervals [a,b] via the transformation $z=2\frac{x-a}{b-a}-1$ for $x\in [a,b]$.

Figure 6: Chebychev Polynomial Basis Functions on $\left[0,1\right]$

- Combining the Chebychev basis polynomials and Chebychev interpolation nodes yields an extremely well-conditioned interpolation equation.
- The Chebychev interpolation matrix is orthogonal, that is, $\Phi'\Phi$ is diagonal.
- Its condition number is $\sqrt{2}$, regardless of the degree of interpolation, which is near the absolute minimum of 1.
- This implies that basis coefficients can be computed accurately, regardless of the number of basis functions.

Figure 7: Interpolation Matrix Condition Number

Spline Interpolation

Introduction

- Piecewise polynomial splines, or simply splines for short, are a rich, flexible class of functions that may be used instead of high degree polynomials to approximate a real-valued function over a bounded interval.
- Generally, an order k spline consists of a series of k^{th} degree polynomial segments spliced together so as to preserve continuity of derivatives of order k-1 or less.

- Two classes of splines are often employed in practice.
- A first-order or linear spline is a series of line segments spliced together to form a continuous function.
- A third-order or cubic spline is a series of cubic polynomials segments spliced together to form a twice continuously differentiable function.

Linear Splines

- Linear splines use line segments to connect points on the graph of the function to be approximated.
- They are particularly easy to construct and work with in practice, which explains their widespread popularity.

Figure 8: Linear Spline Interpolation, 2 Intervals

Figure 9: Linear Spline Interpolation, 4 Intervals

Figure 10: Linear Spline Interpolation, 8 Intervals

A linear spline with n+1 evenly-spaced interpolation nodes x_0, x_1, \ldots, x_n on the interval [a, b] may be written as a linear combination of the n+1 basis functions

$$\phi_j(x) = \begin{cases} 1 - \frac{|x - x_j|}{h} & |x - x_j| \le h \\ 0 & \text{otherwise.} \end{cases}$$

where h = (b - a)/n is the distance between the nodes.

Figure 11: Linear Spline Basis Functions on $\left[0,1\right]$

- Linear spline basis functions are often called the "hat" functions.
- Each basis function is zero everywhere, except over a narrow support of width 2h.
- · At most two basis functions are nonzero at any point.

- Computing basis coefficients for a linear spline approximation is a trivial matter.
- By construction, $\phi_i(x_j)$ equals one if i=j, but equals zero otherwise; that is, the interpolation matrix Φ is the identity matrix.
- Thus, the basis coefficients are simply the function values at the interpolation nodes, $c_i = f(x_i)$.

- Evaluating a linear spline and its derivative at an arbitrary point x is straightforward.
- Since at most two basis functions are nonzero at any point, only two basis function evaluations are required.
- Specifically, if x lies between x_{i-1} and x_i , then

$$\hat{f}(x) = ((x - x_{i-1})c_i + (x_i - x)c_{i-1})/h$$

and

$$\hat{f}'(x) = (c_i - c_{i-1})/h.$$

- Linear splines, however, possess limitations that make them a poor choices in most computational economic applications.
- Linear splines possess discontinuous first derivatives and higher order derivatives that are zero almost everywhere.
- Linear splines thus do a poor job of approximating first derivatives and cannot approximate higher order derivatives.
- In many economic applications, however, derivatives are of fundamental interest to an economist.

Cubic Splines

- A <u>cubic spline</u> is a series of cubic polynomials segments spliced together to form a twice continuously differentiable function.
- Cubic splines retain much of the simplicity of linear splines, but possess continuous first and second derivatives.
- Cubic splines are therefore preferred to linear splines when a smooth approximation is required.

Figure 12: Cubic Spline Basis Functions on $\left[0,1\right]$

- · Cubic spline basis functions exhibit certain properties.
- Each basis function is zero everywhere, except over a narrow support.
- Each basis function and its derivatives vanish at the endpoints of its support.
- · At most four basis functions are nonzero at any point.

- Computing basis coefficients for a cubic spline approximation is also relatively easy.
- By construction, at most four basis functions are nonzero at any interpolation node.
- Thus, the interpolation matrix will consist mostly of zeros, with nonzero entries concentrated around the diagonal.
- As such, the interpolation matrix may be stored in "sparse" format, reducing the required storage space and reducing the operations required to solve the interpolation equation.
- The matrix, moreover, is naturally well-conditioned.

Additional Considerations

Multidimensional Interpolation

- Univariate interpolation methods can be extended to higher dimensions by applying tensor product principles.
- Consider the problem of interpolating a bivariate real-valued function f over an interval

$$I = \{(x, y) \mid a_x \le x \le b_x, a_y \le y \le b_y\}.$$

- Let $\phi_1^x, \phi_2^x, \dots, \phi_{n_x}^x$ and x_1, x_2, \dots, x_{n_x} be n_x univariate basis functions and n_x interpolation nodes for the interval $[a_x, b_x]$.
- Let $\phi_1^y, \phi_2^y, \ldots, \phi_{n_y}^y$ and $y_1, y_2, \ldots, y_{n_y}$ be n_y univariate basis functions and n_y interpolation nodes for the interval $[a_y, b_y]$.

• Then an $n = n_x n_y$ bivariate function basis defined on I may be obtained by forming the tensor product of the univariate basis functions:

$$\phi_{ij}(x,y) = \phi_i^x(x)\phi_j^y(y)$$

for
$$i = 1, 2, ..., n_x$$
 and $j = 1, 2, ..., n_y$.

• Similarly, a grid of $n=n_xn_y$ interpolation nodes for I may be obtained by forming the Cartesian product of the univariate interpolation nodes

$$\{ (x_i, y_j) \mid i = 1, 2, \dots, n_x; j = 1, 2, \dots, n_y \}.$$

- Typically, multivariate tensor product interpolation schemes inherit the favorable qualities of their univariate parents.
- Multivariate spline interpolation schemes produce sparse interpolation matrices.
- Multivariate Chebychev polynomial interpolation schemes produce orthogonal, well-conditioned interpolation matrices.

- However, multidimensional tensor product interpolation schemes suffer from the curse of dimensionality.
- Specifically, the number of basis functions and interpolation nodes grow exponentially with the dimension of the function domain.
- For example, if you choose n basis functions and interpolation nodes in each of d dimensions, the tensor product basis would contain n^d functions and the Cartesian product interpolation grid would contain n^d interpolation nodes.

- Working directly with tensor product bases requires knowledge of tensor algebra.
- However, there is no need for you to master tensor algebra.
- All mundane tensor product operations required to solve computational economic problems are handled efficiently by CompEcon utilities.

Choosing an Approximation Method

- Chebychev polynomial interpolation tends to outperform spline interpolation when the function being approximated is very smooth.
- However, if the function possesses discontinuities in the first or second derivative, spline functions sometimes perform as well or better.
- Also, if the dimension of the problem is large, spline interpolation enjoys an advantage because of its sparse interpolation matrix.

		Linoar	Cubic	Chabuchau
		Linear	Cubic	Chebychev
Function	Nodes	Spline	Spline	Polynomial
e^{-x}	10	-1.82	-4.42	-9.22
	20	-2.45	-5.86	-15.00
	30	-2.81	-6.64	-15.00
$ x ^{0.5}$	10	-0.48	-0.48	-0.47
	20	-0.64	-0.67	-0.62
	30	-0.73	-0.77	-0.71

Log10 Approximation Errors for Smooth and Kinked Functions on [-1,1], Different Interpolation Schemes

CompEcon Toolbox

The Basis class

There are three classes defined in CompEcon to represent interpolation bases:

BasisChebyshev - defines a Chebyshev basis

BasisSpline - defines a spline basis

BasisLinear - defines a linear basis

To work with them, we follow these steps:

- 1. define a basis object
- 2. fit the basis to a function
- 3. evaluate the basis at interpolation points

To define a basis object

Step 1:

basis = BASIS(n,a,b,order)

```
- basis class ('BasisChebyshev' or 'BasisSpline')
BASIS
            - number of basis functions and nodes
n
            - left endpoint of interpolation interval
a
            - right endpoint of interpolation interval
h
order
            - optional order of spline (default: 3 for cubic)
basis
            - an instance of class BASIS
 .nodes
           - interpolation nodes
 .Phi()
           - interpolation matrix
            - basis function coefficients
 . C
```

Fitting a function

Step 2:

Fither

basis.y = y_at_nodes

or

basis.c = new_coef

basis - an instance of class BASIS
y_at_nodes known value of function at nodes
new_coef - new interpolation coefficients

basis object is updated in place

Evaluate interpolant

Step 3:

```
y = basis(x, d)
```

basis	- an instance of class BASIS
X	evaluation point(s)
d	- order of differentiation
у	-approximant value or derivative

Evaluate basis functions

Although rarely needed when working with these classes, we can also compute the basis functions at arbitrary interpolation points.

```
phi = basis.Phi(x, d)
```

basis	- an instance of class BASIS
X	evaluation point(s)
d	- order of differentiation
phi	- basis functions or derivatives evaluated at x

Univariate Approximation

Example 1:

Let us construct an approximation to $f(x) = \exp(-x)$ over the interval [-1,1] and test how well it tracks the function and its first derivative.

Step 1: Create functions for f and its derivatives:

```
def f(x): return np.exp(-x)
def d1(x): return -np.exp(-x)
def d2(x): return np.exp(-x)
```

Step 2: Create a Chebyshev polynomial basis and fit the f function:

```
n, a, b = 10, -1, 1
F = BasisChebyshev(n, a, b, f=f)
```

Step 3: Use F to evaluate the Chebychev polynomial interpolant and its derivatives:

```
x = np.linspace(a, b, 501)
ffit = F(x)
dfit1 = F(x, 1)
dfit2 = F(x, 2)
```

Step 4: Plot the approximation residuals on a refined grid:

```
plt.plot(x, ffit-f(x))
plt.plot(x, dfit1-d1(x))
plt.plot(x, dfit2-d2(x))
```


Figure 13: 10-node Chebychev Approximation Error for e^{-x}

Figure 14: Chebychev Approximation Error for First Derivative of e^{-x}

Figure 15: Chebychev Approximation Error for Second Derivative of e^{-x}

Example 2:

Bivariate Approximation

Let us construct a Chebychev polynomial interpolant to the bivariate function $f(x_1,x_2)=cos(x_1)/exp(x_2)$ over unit square $[0,1]\times[0,1]$.

Step 1: Create functions for f and its derivatives up to order two:

```
exp, cos, sin = np.exp, np.cos, np.sin

f = lambda x: cos(x[0]) / exp(x[1])
d1 = lambda x: -sin(x[0]) / exp(x[1])
d2 = lambda x: -cos(x[0]) / exp(x[1])
d11 = lambda x: -cos(x[0]) / exp(x[1])
d12 = lambda x: sin(x[0]) / exp(x[1])
d22 = lambda x: cos(x[0]) / exp(x[1])
```

Step 2: Create a Chebyshev polynomial basis and fit the f function:

```
n, a, b = 6, 0, 1
F = BasisChebyshev([n, n], a, b, f=f)
```

Step 3: To compute the partial derivatives $\frac{\partial f}{\partial x_1}$ and $\frac{\partial f}{\partial x_2}$ of the interpolant at x=(0.5,0.5), execute

```
x = np.array([[0.5],[0.5]])
dfit1 = F(x, [1, 0])
dfit2 = F(x, [0, 1])
```

To compute the second partial derivatives $\frac{\partial^2 f}{\partial x_1^2}$, $\frac{\partial^2 f}{\partial x_1 \partial x_2}$, and $\frac{\partial^2 f}{\partial x_2^2}$ of the interpolant, execute

```
dfit11 = F(x, [2, 0])
dfit22 = F(x, [0, 2])
dfit12 = F(x, [1, 1])
```

Step 4: To plot the approximation residual, execute:

```
nplot = [101, 101]
X = nodeunif(nplot, [a, a], [b, b])
error = (F(x) - f(x)).reshape(nplot)
X1, X2 = X
X1.shape = nplot
X2.shape = nplot
plt.figure()
ax = fig1.add_subplot(1, 1, 1, projection='3d')
ax.plot_surface(X1, X2, error, rstride=1, cstride=1,
    cmap=cm.coolwarm, linewidth=0, antialiased=False)
```


Figure 16: 6 by 6 Node Chebychev Polynomial Approximation Error for $cos(x_1)/exp(x_2)$

Functional Equations

Functional equations are ubiquitous in dynamic economics and include

- Bellman equations
- Euler equations
- · Rational expectations equilibria
- Ordinary differential equations
- Partial differential equations

Formally, a functional equation takes the form

$$F(f,x) = 0$$
 for all $x \in S$,

where f is an unknown real-valued function defined on a set $S \subset \Re^d$ and F is a real-valued mapping with two arguments, a real-valued function f defined on S and an element x of S.

- For a given function $f: S \mapsto \Re$, the real-valued mapping $x \mapsto F(f,x)$ on S is called the residual of f.
- A solution to the functional equation is a function f whose residual is zero for all $x \in S$.

- A functional equation is fundamentally difficult to solve because the unknown is an entire function f that must satisfy an infinite number of conditions, one at each point x of S.
- Although some functional equations encountered in economics posses closed-form solution, the vast majority do not.
- Accurate approximate solutions, however, can be computed numerically using natural extensions of interpolation methods.

Collocation Method

- We will compute approximate solutions to functional equations numerically using the collocation method.
- The collocation method calls for the solution function f to be approximated using a linear combination of n known basis functions $\phi_1, \phi_2, \ldots, \phi_n$ defined on S:

$$f(x) \approx \sum_{j=1}^{n} c_j \phi_j(x).$$

• The basis coefficients c_1, c_2, \ldots, c_n are fixed by requiring the approximation residual to be zero, not at all x in S, but rather at n judiciously chosen collocation nodes x_1, x_2, \ldots, x_n in S:

$$F\left(\sum_{j=1}^{n} c_j \phi_j, \ x_i\right) = 0, \qquad i = 1, 2, \dots, n.$$

- This equation is called the collocation equation.
- The unknown of the collocation equation is not the desired function f, but rather the basis coefficients c_1, c_2, \ldots, c_n of its approximant.

- The collocation method replaces a fundamentally difficult infinite-dimensional functional equation problem with a finite-dimensional rootfinding problem that can be solved using standard nonlinear equation methods.
- We will use collocation to solve the dynamic economic models we encounter later in the course.
- We will introduce the collocation method by first applying it to some relatively easy examples.

Example 3:

Implicit Function

• Given a function $g: \Re^2 \mapsto \Re$

$$g(x,y) = y^{-2} + y^{-5} - 2x$$

find a function $f: \Re \mapsto \Re$ such that:

$$g(x, f(x)) = 0, \quad x \in [1, 5].$$

 The Implicit Function Theorem guarantees that such a function exists, is unique, and is continuously differentiable. • To solve the functional equation numerically using collocation, approximate the unknown function using a linear combination of n known basis functions $\phi_1, \phi_2, \ldots, \phi_n$:

$$f(x) \approx \sum_{j=1}^{n} c_j \phi_j(x).$$

• Then fix the basis coefficients c_1, c_2, \ldots, c_n by requiring the approximant to satisfy the functional equation at n judiciously chosen collocation nodes x_1, x_2, \ldots, x_n :

$$g(x_i, \sum_{j=1}^n c_j \phi_j(x_i)) = 0, \qquad i = 1, 2, \dots, n.$$

 \cdot That is, solve the n nonlinear collocation equations

$$\left(\sum_{j=1}^{n} c_j \phi_j(x_i)\right)^{-2} + \left(\sum_{j=1}^{n} c_j \phi_j(x_i)\right)^{-5} - 2x_i = 0, \quad i = 1, 2, \dots, n$$

for the n unknown basis function coefficients c_1, c_2, \ldots, c_n .

To solve the collocation equation in Python:

Step 1: Create a **BasisChebyshev** to represent f, and obtain its nodes

```
n, a, b = 31, 1, 5
F = BasisChebyshev(n, a, b)
x = F.nodes
```

where we use a 31 node Chebychev polynomial interpolation scheme.

Step 2: Define a function **resid** that evaluates the residual of the approximation at the basis nodes **x**, for arbitrary basis coefficient vector **c**:

```
def resid(c):
    F.c = c # update basis coefficients
    f = F(x) # interpolate at basis nodes x
    return f ** -2 + f ** -5 - 2 * x
```

Step 3: Solve the collocation equation for the basis coefficients:

```
c0 = np.zeros(n) #initial guess for coeffs
c0[0] = 0.2
F.c = NLP(resid).broyden(c0)
```

Here, we use **broyden** to solve for a coefficient vector **c** that sets the residual to zero at the collocation nodes.

Step 4: Plot the approximant on a refined grid:

x = np.linspace(a, b, 1000)plt.plot(x, F(x))

Step 5: Plot the residual on a refined grid of nodes to assess the quality of the approximation:

plt.plot(x, resid(F.c))

Example 4:

Monopolistic Supply

• A monopolist facing a demand curve q=d(p) sets output q so as to maximize marginal profit, implying that

$$\frac{d\pi}{dq} = p + q\frac{dp}{dq} - k(q) = 0$$

where p is price, dp/dq is the marginal effect of the monopolists's output on price, and k(q) is marginal cost.

• The monopolist's effective supply curve q=s(p), which gives the quantity q he is willing to produce at a given price p, is characterized by the functional equation

$$p + s(p)/d'(p) - k(s(p)) = 0, p > 0.$$

• To solve the functional equation numerically using collocation, approximate the unknown effective supply curve using a linear combination of n known basis functions $\phi_1, \phi_2, \ldots, \phi_n$:

$$s(p) \approx \sum_{j=1}^{n} c_j \phi_j(p).$$

• Then fix the basis coefficients c_1, c_2, \ldots, c_n by requiring the approximant to satisfy the first-order optimality condition at n judiciously chosen collocation nodes p_1, p_2, \ldots, p_n :

$$p_i + \sum_{j=1}^n c_j \phi_j(p_i) / d'(p_i) - k \left(\sum_{j=1}^n c_j \phi_j(p_i) \right) = 0, \quad i = 1, 2, \dots, n.$$

• Let us derive the monopolist's effective supply curve for $p \in [0.5, 2.5]$ when

$$d(p) = p^{-3.5}$$

and

$$k(q) = \sqrt{q} + q^2.$$

To solve the collocation equation in Python:

Step 1: Create a **BasisChebyshev** to represent the quantity q, and obtain its nodes p (prices):

```
n, a, b = 21, 0.5, 2.5
Q = BasisChebyshev(n, a, b)
p = Q.nodes
```

where we use a 21 node Chebychev polynomial interpolation scheme.

Step 2: Define a function **resid** that evaluates the residual of the approximation at the basis nodes **p**, for arbitrary basis coefficient vector **c**:

```
def resid(c):
    Q.c = c
    q = Q(p)
    return p + q/(-3.5*p**(-4.5)) - np.sqrt(q) - q**2
```

Step 3: Solve the collocation equation for the basis coefficients:

```
c0 = np.zeros(n) #initial guess for coeffs
c0[0] = 2
monopoly = NLP(resid)
Q.c = monopoly.broyden(c0)
```

Here, we use **broyden** to solve for a coefficient vector **c** that sets the residual to zero at the collocation nodes.

Step 4: Plot the approximant on a refined grid:

```
p = np.linspace(a, b, 1000)
plt.plot(Q(p), p)
```


Step 5: Plot the residual on a refined grid of nodes to assess the quality of the approximation:

plt.plot(p, resid(Q.c))

Example 5:

Cournot Equilibrium

- Consider an oligopolistic market consisting of m identical firms facing a common demand curve q=d(p).
- Under the Cournot equilibrium assumption, each firm i takes its competitors' output as fixed when determining its output.
- That is, firm i assumes that the marginal impact of its output decision q_i on market price p is given by

$$\frac{dp}{dq_i} = \frac{1}{d'(p)}.$$

 Under the Cournot equilibrium assumption, firm i's profit maximization condition thus reduces to

$$\frac{d\pi}{dq_i} = p + \frac{q_i}{d'(p)} - k(q_i) = 0,$$

where $k(\cdot)$ is the representative firm's marginal cost function.

• The representative firm's effective supply curve q=f(p), which gives the quantity q it is willing to produce at a given price p, is thus characterized by the functional equation

$$p + f(p)/d'(p) - k(f(p)) = 0,$$
 $p > 0.$

• To solve the functional equation numerically by collocation, approximate the representative firm's effective supply curve using a linear combination of n known basis functions $\phi_1, \phi_2, \ldots, \phi_n$:

$$f(p) \approx \sum_{j=1}^{n} c_j \phi_j(p).$$

• Then fix the basis coefficients c_1, c_2, \ldots, c_n by requiring that

$$p_i + \sum_{j=1}^n c_j \phi_j(p_i) / d'(p_i) - k \left(\sum_{j=1}^n c_j \phi_j(p_i)\right) = 0$$

at n judiciously chosen price collocation nodes p_1, p_2, \dots, p_n .

• Let us derive the representative firm's effective supply curve for $p \in [1, 2]$ if

$$d(p) = p^{-\eta}$$

and

$$k(q) = \alpha \sqrt{q} + q^2,$$

where $\alpha = 1$ and $\eta = 3.5$.

To solve the collocation equation in Python:

Step 1: Create a **BasisChebyshev** to represent the quantity supplied s, and obtain its nodes p (prices):

where we use a 25 node Chebychev polynomial interpolation scheme.

Step 2: Define a function **resid** that evaluates the residual of the approximation at the basis nodes **p**, for arbitrary basis coefficient vector **c**:

```
alpha, eta = 1.0, 3.5

def resid(c):
    S.c = c  # update interpolation coefficients
    q = S(p) # compute quantity supplied at price nodes
    return p - q*(p**(eta+1)/eta) - alpha*np.sqrt(q) - q**2
```

Step 3: Solve the collocation equation for the basis coefficients:

```
cournot = NLP(resid)
S.c = cournot.broyden(S.c, tol=1e-12)
```

Here, we use **broyden** to solve for a coefficient vector **c** that sets the residual to zero at the collocation nodes.

Step 4: Plot the demand and supply of 5 firms, on a refined grid:

```
D = lambda p: p**(-eta) # demand function
prices = np.linspace(a, b, 501)
plt.plot(5*S(prices),prices, D(prices),prices)
```


Step 5: Plot the residual on a refined grid of nodes to assess the quality of the approximation:

plt.plot(prices, resid(S.c))

Figure 23: Market Demand and Effective Supply with Varying Number of Identical Firms

Figure 24: Equilibrium Price as a Function of Number of Firms