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Introduction



In many computational economics applications, we need to
replace an analytically intractable function f : ℜn 7→ ℜ with a
numerically tractable approximation f̂ .
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• In some applications, f can be evaluated at any point of
its domain, but with difficulty, and we wish to replace it
with an approximation f̂ that is easier to work with.

• In other applications, f is defined implicitly via a
functional equation, but the equation lacks closed-form
solution and we wish to compute an approximate solution
f̂ .
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• We first study interpolation, a general strategy for forming
a tractable approximation to a function that can be
evaluated at any point of its domain.

• Methods for solving functional equations are based on
interpolation principles and are studied subsequently.
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Interpolation

• Consider a real-valued function f defined on an interval
of the real line that can be evaluated at any point of its
domain.

• Generally, we will approximate f using a function f̂ that is
a finite linear combination of n known basis functions
ϕ1, ϕ2, . . . , ϕn of our choosing:

f(x) ≈ f̂(x) ≡
n∑

j=1

cjϕj(x).

• We will fix the n basis coefficients c1, c2, . . . , cn by
requiring f̂ to interpolate, that is, agree with f , at n
interpolation nodes x1, x2, . . . , xn of our choosing.
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• The most readily recognizable basis is the monomial basis

ϕ0(x) = 1

ϕ1(x) = x

ϕ2(x) = x2

...
ϕn(x) = xn,

which may be used to construct polynomial
approximations:

f(x) ≈ f̂(x) ≡ c0 + c1x+ c2x
2 + . . .+ cnx

n.

• As we will shortly see, however, other function bases may
be used to approximate functions.

• And there are different ways to choose the interpolation
nodes.
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• Regardless of how the n basis functions and nodes are
chosen, computing the basis coefficients reduces to
solving a linear equation:

n∑
j=1

cjϕj(xi) = f(xi), i = 1, 2, . . . , n.

• The interpolation equation can be written in the matrix
format

Φc = y

where, for i = 1, 2, . . . , n and j = 1, 2, . . . , n,

Φij = ϕj(xi) and yi = f(xi)

and c is the n× 1 vector of basis coefficients to be
determined.
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• In theory, an interpolation scheme is well-defined if the
basis functions and interpolation nodes are chosen such
that the interpolation matrix Φ is nonsingular.

• In practice, however, the interpolation matrix must meet
the more stringent requirement that it not be
ill-conditioned.

• Otherwise, it will not be possible to compute the basis
coefficients accurately.
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Ideally, an interpolation scheme should satisfy various
conditions.

• It should be theoretically possible to achieve an arbitrarily
accurate approximation by increasing the number of basis
functions and interpolation nodes.

• It should be possible to solve the interpolation equation
quickly and accurately.

• It should be relatively inexpensive to evaluate,
differentiate, integrate or otherwise work with the
approximation.
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• Interpolation schemes differ only in how the basis
functions ϕj and interpolation nodes xi are chosen.

• We develop interpolation schemes based on two classes
of basis functions:

• Orthogonal polynomials
• Piecewise polynomial splines
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Polynomial Interpolation



Weierstrass Theorem

• The Weierstrass Theorem asserts that any continuous
real-valued function can be approximated to an arbitrary
degree of accuracy over a bounded interval by a
polynomial.

• Specifically, if f is continuous on [a, b] and ϵ > 0, then
there exists a polynomial p such that

max
x∈[a,b]

|f(x)− p(x)| < ϵ.
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• The Weierstrass theorem motivates the use of
polynomials to approximate continuous functions.

• The theorem, however, is not very practical.
• It gives no guidance on how to find a polynomial that
provides a desired level of accuracy.

• It does not even tell us what degree polynomial is
required.

11



Naive Polynomial Interpolation

• One way to construct an nth-degree polynomial
approximation f̂ to a function f over a bounded interval
[a, b] is as follows.

• Write the approximation

f̂(x) ≡
n∑

j=0

cjx
j

in terms of the monomial basis functions 1, x, x2, . . . , xn.
• Fix the n+ 1 unknown basis coefficients c0, c1, . . . , cn by
requiring f̂ to agree with f at the n+ 1 equally-spaced
interpolation nodes xi = a+ ih, where h = (b− a)/n.
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Figure 1: Monomial Basis Functions on [0, 1] 13



• This polynomial interpolation scheme, however, suffers
from two serious, but distinct problems.

• First, the interpolation matrix is a Vandermonde matrix,
which becomes increasingly ill-conditioned as the degree
of the interpolating polynomial rises.

• Second, there are functions for which the approximation
error explodes as the degree of the interpolating
polynomial rises.

• The classic example is Runge’s function:

f(x) =
1

1 + 25x2
, −1 ≤ x ≤ 1.
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Chebychev Polynomial Interpolation

• Theory asserts that the best way to approximate a
continuous function with a polynomial over a bounded
interval [a, b] is to interpolate it at the so-called
Chebychev nodes:

xi =
a+ b

2
+

b− a

2
cos

(
n− i+ 0.5

n
π

)
, i = 1, 2, . . . , n.

• The Chebychev nodes are not evenly spaced and do not
include the endpoints of the approximation interval.

• They are more closely spaced near the endpoints of the
approximation interval and less so near the center.
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If f is continuous ...

• Rivlin’s Theorem asserts that Chebychev-node polynomial
interpolation is nearly optimal, that is, it affords an
approximation error that is very close to the lowest error
attainable with another polynomial of the same degree.

• Jackson’s Theorem asserts that Chebychev-node
polynomial interpolation is consistent, that is, the
approximation error vanishes as the degree of the
polynomial increases.
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• When the function being approximated is smooth,
Chebychev node polynomial interpolants typically exhibit
errors that oscillate fairly evenly throughout the interval
of approximation.

• This feature is called the Chebychev equi-oscillation
property.

• Consider the Chebychev interpolant to exp(−x) on [−1, 1].
• The Chebychev interpolant avoids the instability near the
interval endpoints exhibited by a uniform node
polynomial interpolant because the Chebychev nodes are
more concentrated near the endpoints.
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• Interpolating at the Chebychev nodes offers many
advantages.

• However, merely interpolating at the Chebychev nodes
does not eliminate ill-conditioning.

• Ill-conditioning stems from the choice of basis functions,
not the choice of interpolation nodes.

• Fortunately, there is alternative to the monomial basis
that is ideal for expressing Chebychev-node polynomial
interpolants.
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• The optimal basis for expressing Chebychev-node
polynomial interpolants is called the Chebychev
polynomial basis.

• The Chebychev polynomials are defined for z ∈ [−1, 1] as

T0(z) = 1

T1(z) = z

T2(z) = 2z2 − 1

T3(z) = 4z3 − 3z
...

Tj(z) = 2zTj−1(z)− Tj−2(z).

• They can be defined for arbitrary intervals [a, b] via the
transformation z = 2x−a

b−a − 1 for x ∈ [a, b].
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Figure 6: Chebychev Polynomial Basis Functions on [0, 1]
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• Combining the Chebychev basis polynomials and
Chebychev interpolation nodes yields an extremely
well-conditioned interpolation equation.

• The Chebychev interpolation matrix is orthogonal, that is,
Φ′Φ is diagonal.

• Its condition number is
√
2, regardless of the degree of

interpolation, which is near the absolute minimum of 1.
• This implies that basis coefficients can be computed
accurately, regardless of the number of basis functions.
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Spline Interpolation



Introduction

• Piecewise polynomial splines, or simply splines for short,
are a rich, flexible class of functions that may be used
instead of high degree polynomials to approximate a
real-valued function over a bounded interval.

• Generally, an order k spline consists of a series of kth

degree polynomial segments spliced together so as to
preserve continuity of derivatives of order k − 1 or less.
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• Two classes of splines are often employed in practice.
• A first-order or linear spline is a series of line segments
spliced together to form a continuous function.

• A third-order or cubic spline is a series of cubic
polynomials segments spliced together to form a twice
continuously differentiable function.
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Linear Splines

• Linear splines use line segments to connect points on the
graph of the function to be approximated.

• They are particularly easy to construct and work with in
practice, which explains their widespread popularity.
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Figure 8: Linear Spline Interpolation, 2 Intervals
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x0 = a x1 x2 x3 x4 = b

Linear Spline with 5 nodes

Figure 9: Linear Spline Interpolation, 4 Intervals
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Figure 10: Linear Spline Interpolation, 8 Intervals
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A linear spline with n+ 1 evenly-spaced interpolation nodes
x0, x1, . . . , xn on the interval [a, b] may be written as a linear
combination of the n+ 1 basis functions

ϕj(x) =


1− |x−xj |

h |x− xj | ≤ h

0 otherwise.

where h = (b− a)/n is the distance between the nodes.
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Figure 11: Linear Spline Basis Functions on [0, 1] 34



• Linear spline basis functions are often called the “hat”
functions.

• Each basis function is zero everywhere, except over a
narrow support of width 2h.

• At most two basis functions are nonzero at any point.
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• Computing basis coefficients for a linear spline
approximation is a trivial matter.

• By construction, ϕi(xj) equals one if i = j, but equals zero
otherwise; that is, the interpolation matrix Φ is the
identity matrix.

• Thus, the basis coefficients are simply the function values
at the interpolation nodes, ci = f(xi).
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• Evaluating a linear spline and its derivative at an arbitrary
point x is straightforward.

• Since at most two basis functions are nonzero at any
point, only two basis function evaluations are required.

• Specifically, if x lies between xi−1 and xi, then

f̂(x) = ((x− xi−1)ci + (xi − x)ci−1)/h

and
f̂ ′(x) = (ci − ci−1)/h.
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• Linear splines, however, possess limitations that make
them a poor choices in most computational economic
applications.

• Linear splines possess discontinuous first derivatives and
higher order derivatives that are zero almost everywhere.

• Linear splines thus do a poor job of approximating first
derivatives and cannot approximate higher order
derivatives.

• In many economic applications, however, derivatives are
of fundamental interest to an economist.
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Cubic Splines

• A cubic spline is a series of cubic polynomials segments
spliced together to form a twice continuously
differentiable function.

• Cubic splines retain much of the simplicity of linear
splines, but possess continuous first and second
derivatives.

• Cubic splines are therefore preferred to linear splines
when a smooth approximation is required.
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Figure 12: Cubic Spline Basis Functions on [0, 1] 40



• Cubic spline basis functions exhibit certain properties.
• Each basis function is zero everywhere, except over a
narrow support.

• Each basis function and its derivatives vanish at the
endpoints of its support.

• At most four basis functions are nonzero at any point.
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• Computing basis coefficients for a cubic spline
approximation is also relatively easy.

• By construction, at most four basis functions are nonzero
at any interpolation node.

• Thus, the interpolation matrix will consist mostly of zeros,
with nonzero entries concentrated around the diagonal.

• As such, the interpolation matrix may be stored in
“sparse” format, reducing the required storage space and
reducing the operations required to solve the
interpolation equation.

• The matrix, moreover, is naturally well-conditioned.
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Additional Considerations



Multidimensional Interpolation

• Univariate interpolation methods can be extended to
higher dimensions by applying tensor product principles.

• Consider the problem of interpolating a bivariate
real-valued function f over an interval

I = {(x, y) | ax ≤ x ≤ bx, ay ≤ y ≤ by}.
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• Let ϕx
1 , ϕ

x
2 , . . . , ϕ

x
nx
and x1, x2, . . . , xnx be nx univariate

basis functions and nx interpolation nodes for the
interval [ax, bx].

• Let ϕy
1, ϕ

y
2, . . . , ϕ

y
ny and y1, y2, . . . , yny be ny univariate

basis functions and ny interpolation nodes for the interval
[ay, by].
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• Then an n = nxny bivariate function basis defined on I

may be obtained by forming the tensor product of the
univariate basis functions:

ϕij(x, y) = ϕx
i (x)ϕ

y
j (y)

for i = 1, 2, . . . , nx and j = 1, 2, . . . , ny .
• Similarly, a grid of n = nxny interpolation nodes for I may
be obtained by forming the Cartesian product of the
univariate interpolation nodes

{ (xi, yj) | i = 1, 2, . . . , nx; j = 1, 2, . . . , ny}.
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• Typically, multivariate tensor product interpolation
schemes inherit the favorable qualities of their univariate
parents.

• Multivariate spline interpolation schemes produce sparse
interpolation matrices.

• Multivariate Chebychev polynomial interpolation schemes
produce orthogonal, well-conditioned interpolation
matrices.
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• However, multidimensional tensor product interpolation
schemes suffer from the curse of dimensionality.

• Specifically, the number of basis functions and
interpolation nodes grow exponentially with the
dimension of the function domain.

• For example, if you choose n basis functions and
interpolation nodes in each of d dimensions, the tensor
product basis would contain nd functions and the
Cartesian product interpolation grid would contain nd

interpolation nodes.
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• Working directly with tensor product bases requires
knowledge of tensor algebra.

• However, there is no need for you to master tensor
algebra.

• All mundane tensor product operations required to solve
computational economic problems are handled efficiently
by CompEcon utilities.
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Choosing an Approximation Method

• Chebychev polynomial interpolation tends to outperform
spline interpolation when the function being
approximated is very smooth.

• However, if the function possesses discontinuities in the
first or second derivative, spline functions sometimes
perform as well or better.

• Also, if the dimension of the problem is large, spline
interpolation enjoys an advantage because of its sparse
interpolation matrix.
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Linear Cubic Chebychev
Function Nodes Spline Spline Polynomial

e−x 10 -1.82 -4.42 -9.22
20 -2.45 -5.86 -15.00
30 -2.81 -6.64 -15.00

|x|0.5 10 -0.48 -0.48 -0.47
20 -0.64 -0.67 -0.62
30 -0.73 -0.77 -0.71

Log10 Approximation Errors for Smooth and Kinked Functions
on [−1, 1], Different Interpolation Schemes

50



CompEcon Toolbox



The Basis class

There are three classes defined in CompEcon to represent
interpolation bases:
BasisChebyshev - defines a Chebyshev basis
BasisSpline - defines a spline basis
BasisLinear - defines a linear basis

To work with them, we follow these steps:

1. define a basis object
2. fit the basis to a function
3. evaluate the basis at interpolation points
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To define a basis object

Step 1:

basis = BASIS(n,a,b,order)

BASIS - basis class (’BasisChebyshev’ or ’BasisSpline’)
n - number of basis functions and nodes
a - left endpoint of interpolation interval
b - right endpoint of interpolation interval
order - optional order of spline (default: 3 for cubic)

basis - an instance of class BASIS
.nodes - interpolation nodes
.Phi() - interpolation matrix
.c - basis function coefficients
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Fitting a function

Step 2:

Either

basis.y = y_at_nodes

or

basis.c = new_coef

basis - an instance of class BASIS
y_at_nodes- known value of function at nodes
new_coef - new interpolation coefficients

basis object is updated in place
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Evaluate interpolant

Step 3:

y = basis(x, d)

basis - an instance of class BASIS
x - evaluation point(s)
d - order of differentiation

y -approximant value or derivative
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Evaluate basis functions

Although rarely needed when working with these classes, we
can also compute the basis functions at arbitrary interpolation
points.

phi = basis.Phi(x, d)

basis - an instance of class BASIS
x - evaluation point(s)
d - order of differentiation

phi - basis functions or derivatives evaluated at x
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Example 1:

Univariate Approximation



Let us construct an approximation to f(x) = exp(−x) over the
interval [−1, 1] and test how well it tracks the function and its
first derivative.

Step 1: Create functions for f and its derivatives:

def f(x): return np.exp(-x)
def d1(x): return -np.exp(-x)
def d2(x): return np.exp(-x)

Step 2: Create a Chebyshev polynomial basis and fit the f
function:

n, a, b = 10, -1, 1
F = BasisChebyshev(n, a, b, f=f)
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Step 3: Use F to evaluate the Chebychev polynomial
interpolant and its derivatives:

x = np.linspace(a, b, 501)
ffit = F(x)
dfit1 = F(x, 1)
dfit2 = F(x, 2)

Step 4: Plot the approximation residuals on a refined grid:

plt.plot(x, ffit-f(x))
plt.plot(x, dfit1-d1(x))
plt.plot(x, dfit2-d2(x))
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Figure 13: 10-node Chebychev Approximation Error for e−x

58



1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

4

2

0

2

4

6
Er

ro
r

1e 8 Chebychev Approximation Error - First Derivative

Figure 14: Chebychev Approximation Error for First Derivative of e−x
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Figure 15: Chebychev Approximation Error for Second Derivative of e−x
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Example 2:

Bivariate Approximation



Let us construct a Chebychev polynomial interpolant to the
bivariate function f(x1, x2) = cos(x1)/exp(x2) over unit square
[0, 1]× [0, 1].

Step 1: Create functions for f and its derivatives up to order
two:

exp, cos, sin = np.exp, np.cos, np.sin

f = lambda x: cos(x[0]) / exp(x[1])
d1 = lambda x: -sin(x[0]) / exp(x[1])
d2 = lambda x: -cos(x[0]) / exp(x[1])
d11 = lambda x: -cos(x[0]) / exp(x[1])
d12 = lambda x: sin(x[0]) / exp(x[1])
d22 = lambda x: cos(x[0]) / exp(x[1])
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Step 2: Create a Chebyshev polynomial basis and fit the f
function:

n, a, b = 6, 0, 1
F = BasisChebyshev([n, n], a, b, f=f)
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Step 3: To compute the partial derivatives ∂f
∂x1

and ∂f
∂x2

of the
interpolant at x = (0.5, 0.5) , execute

x = np.array([[0.5],[0.5]])
dfit1 = F(x, [1, 0])
dfit2 = F(x, [0, 1])

To compute the second partial derivatives ∂2f
∂x2

1
, ∂2f
∂x1∂x2

, and ∂2f
∂x2

2

of the interpolant, execute

dfit11 = F(x, [2, 0])
dfit22 = F(x, [0, 2])
dfit12 = F(x, [1, 1])
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Step 4: To plot the approximation residual, execute:

nplot = [101, 101]
X = nodeunif(nplot, [a, a], [b, b])
error = (F(x) - f(x)).reshape(nplot)
X1, X2 = X
X1.shape = nplot
X2.shape = nplot

plt.figure()
ax = fig1.add_subplot(1, 1, 1, projection='3d')
ax.plot_surface(X1, X2, error, rstride=1, cstride=1,

cmap=cm.coolwarm, linewidth=0, antialiased=False)
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Functional Equations



Functional equations are ubiquitous in dynamic economics
and include

• Bellman equations
• Euler equations
• Rational expectations equilibria
• Ordinary differential equations
• Partial differential equations
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• Formally, a functional equation takes the form

F (f, x) = 0 for all x ∈ S,

where f is an unknown real-valued function defined on a
set S ⊂ ℜd and F is a real-valued mapping with two
arguments, a real-valued function f defined on S and an
element x of S.

• For a given function f : S 7→ ℜ, the real-valued mapping
x 7→ F (f, x) on S is called the residual of f .

• A solution to the functional equation is a function f

whose residual is zero for all x ∈ S.
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• A functional equation is fundamentally difficult to solve
because the unknown is an entire function f that must
satisfy an infinite number of conditions, one at each point
x of S.

• Although some functional equations encountered in
economics posses closed-form solution, the vast majority
do not.

• Accurate approximate solutions, however, can be
computed numerically using natural extensions of
interpolation methods.
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Collocation Method

• We will compute approximate solutions to functional
equations numerically using the collocation method.

• The collocation method calls for the solution function f to
be approximated using a linear combination of n known
basis functions ϕ1, ϕ2, . . . , ϕn defined on S:

f(x) ≈
n∑

j=1

cjϕj(x).
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• The basis coefficients c1, c2, . . . , cn are fixed by requiring
the approximation residual to be zero, not at all x in S,
but rather at n judiciously chosen collocation nodes
x1, x2, . . . , xn in S:

F

 n∑
j=1

cjϕj , xi

 = 0, i = 1, 2, . . . , n.

• This equation is called the collocation equation.
• The unknown of the collocation equation is not the
desired function f , but rather the basis coefficients
c1, c2, . . . , cn of its approximant.
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• The collocation method replaces a fundamentally difficult
infinite-dimensional functional equation problem with a
finite-dimensional rootfinding problem that can be solved
using standard nonlinear equation methods.

• We will use collocation to solve the dynamic economic
models we encounter later in the course.

• We will introduce the collocation method by first applying
it to some relatively easy examples.
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Example 3:

Implicit Function



• Given a function g : ℜ2 7→ ℜ

g(x, y) = y−2 + y−5 − 2x

find a function f : ℜ 7→ ℜ such that:

g(x, f(x)) = 0, x ∈ [1, 5].

• The Implicit Function Theorem guarantees that such a
function exists, is unique, and is continuously
differentiable.
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• To solve the functional equation numerically using
collocation, approximate the unknown function using a
linear combination of n known basis functions
ϕ1, ϕ2, . . . , ϕn:

f(x) ≈
n∑

j=1

cjϕj(x).

• Then fix the basis coefficients c1, c2, . . . , cn by requiring
the approximant to satisfy the functional equation at n
judiciously chosen collocation nodes x1, x2, . . . , xn:

g(xi,

n∑
j=1

cjϕj(xi)) = 0, i = 1, 2, . . . , n.
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• That is, solve the n nonlinear collocation equations n∑
j=1

cjϕj(xi)

−2

+

 n∑
j=1

cjϕj(xi)

−5

−2xi = 0, i = 1, 2, . . . , n

for the n unknown basis function coefficients c1, c2, . . . , cn.
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To solve the collocation equation in Python:

Step 1: Create a BasisChebyshev to represent f , and
obtain its nodes

n, a, b = 31, 1, 5
F = BasisChebyshev(n, a, b)
x = F.nodes

where we use a 31 node Chebychev polynomial interpolation
scheme.
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Step 2: Define a function resid that evaluates the residual
of the approximation at the basis nodes x, for arbitrary basis
coefficient vector c:

def resid(c):
F.c = c # update basis coefficients
f = F(x) # interpolate at basis nodes x
return f ** -2 + f ** -5 - 2 * x
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Step 3: Solve the collocation equation for the basis
coefficients:

c0 = np.zeros(n) #initial guess for coeffs
c0[0] = 0.2
F.c = NLP(resid).broyden(c0)

Here, we use broyden to solve for a coefficient vector c that
sets the residual to zero at the collocation nodes.
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Step 4: Plot the approximant on a refined grid:

x = np.linspace(a, b, 1000)
plt.plot(x, F(x))
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Figure 17: Implicit Function
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Step 5: Plot the residual on a refined grid of nodes to assess
the quality of the approximation:

plt.plot(x, resid(F.c))
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Figure 18: Functional Equation Residual
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Example 4:

Monopolistic Supply



• A monopolist facing a demand curve q = d(p) sets output
q so as to maximize marginal profit, implying that

dπ

dq
= p+ q

dp

dq
− k(q) = 0

where p is price, dp/dq is the marginal effect of the
monopolists’s output on price, and k(q) is marginal cost.

• The monopolist’s effective supply curve q = s(p), which
gives the quantity q he is willing to produce at a given
price p, is characterized by the functional equation

p+ s(p)/d′(p)− k(s(p)) = 0, p > 0.
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• To solve the functional equation numerically using
collocation, approximate the unknown effective supply
curve using a linear combination of n known basis
functions ϕ1, ϕ2, . . . , ϕn:

s(p) ≈
n∑

j=1

cjϕj(p).

• Then fix the basis coefficients c1, c2, . . . , cn by requiring the
approximant to satisfy the first-order optimality condition
at n judiciously chosen collocation nodes p1, p2, . . . , pn:

pi+

n∑
j=1

cjϕj(pi)/d
′(pi)−k

 n∑
j=1

cjϕj(pi)

 = 0, i = 1, 2, . . . , n.
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• Let us derive the monopolist’s effective supply curve for
p ∈ [0.5, 2.5] when

d(p) = p−3.5

and
k(q) =

√
q + q2.
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To solve the collocation equation in Python:

Step 1: Create a BasisChebyshev to represent the quantity
q, and obtain its nodes p (prices):

n, a, b = 21, 0.5, 2.5
Q = BasisChebyshev(n, a, b)
p = Q.nodes

where we use a 21 node Chebychev polynomial interpolation
scheme.
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Step 2: Define a function resid that evaluates the residual
of the approximation at the basis nodes p, for arbitrary basis
coefficient vector c:

def resid(c):
Q.c = c
q = Q(p)
return p + q/(-3.5*p**(-4.5)) - np.sqrt(q) - q**2
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Step 3: Solve the collocation equation for the basis
coefficients:

c0 = np.zeros(n) #initial guess for coeffs
c0[0] = 2
monopoly = NLP(resid)
Q.c = monopoly.broyden(c0)

Here, we use broyden to solve for a coefficient vector c that
sets the residual to zero at the collocation nodes.

85



Step 4: Plot the approximant on a refined grid:

p = np.linspace(a, b, 1000)
plt.plot(Q(p), p)
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Figure 19: Monopolist’s Effective Supply Curve
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Step 5: Plot the residual on a refined grid of nodes to assess
the quality of the approximation:

plt.plot(p, resid(Q.c))
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Figure 20: Functional Equation Residual
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Example 5:

Cournot Equilibrium



• Consider an oligopolistic market consisting of m identical
firms facing a common demand curve q = d(p).

• Under the Cournot equilibrium assumption, each firm i

takes its competitors’ output as fixed when determining
its output.

• That is, firm i assumes that the marginal impact of its
output decision qi on market price p is given by

dp

dqi
=

1

d′(p)
.
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• Under the Cournot equilibrium assumption, firm i’s profit
maximization condition thus reduces to

dπ

dqi
= p+

qi
d′(p)

− k(qi) = 0,

where k(·) is the representative firm’s marginal cost
function.

• The representative firm’s effective supply curve q = f(p),
which gives the quantity q it is willing to produce at a given
price p, is thus characterized by the functional equation

p+ f(p)/d′(p)− k(f(p)) = 0, p > 0.
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• To solve the functional equation numerically by
collocation, approximate the representative firm’s
effective supply curve using a linear combination of n
known basis functions ϕ1, ϕ2, . . . , ϕn:

f(p) ≈
n∑

j=1

cjϕj(p).

• Then fix the basis coefficients c1, c2, . . . , cn by requiring
that

pi +

n∑
j=1

cjϕj(pi)/d
′(pi)− k

( n∑
j=1

cjϕj(pi)
)
= 0

at n judiciously chosen price collocation nodes
p1, p2, . . . , pn.
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• Let us derive the representative firm’s effective supply
curve for p ∈ [1, 2] if

d(p) = p−η

and
k(q) = α

√
q + q2,

where α = 1 and η = 3.5.
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To solve the collocation equation in Python:

Step 1: Create a BasisChebyshev to represent the quantity
supplied s, and obtain its nodes p (prices):

n, a, b = 25, 0.5, 2.0
S = BasisChebyshev(n,a,b,

labels=['price'],y=np.ones(n))
p = S.nodes

where we use a 25 node Chebychev polynomial interpolation
scheme.
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Step 2: Define a function resid that evaluates the residual
of the approximation at the basis nodes p, for arbitrary basis
coefficient vector c:

alpha, eta = 1.0, 3.5

def resid(c):
S.c = c # update interpolation coefficients
q = S(p) # compute quantity supplied at price nodes
return p - q*(p**(eta+1)/eta) - alpha*np.sqrt(q) - q**2
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Step 3: Solve the collocation equation for the basis
coefficients:

cournot = NLP(resid)
S.c = cournot.broyden(S.c, tol=1e-12)

Here, we use broyden to solve for a coefficient vector c that
sets the residual to zero at the collocation nodes.
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Step 4: Plot the demand and supply of 5 firms, on a refined
grid:

D = lambda p: p**(-eta) # demand function
prices = np.linspace(a, b, 501)
plt.plot(5*S(prices),prices, D(prices),prices)
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Figure 21: Market Demand and Effective Supply with Five Identical Firms
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Step 5: Plot the residual on a refined grid of nodes to assess
the quality of the approximation:

plt.plot(prices, resid(S.c))
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Figure 22: Representative Firm’s Profit Maximization Residual
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Figure 23: Market Demand and Effective Supply with Varying Number of Identical Firms
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Figure 24: Equilibrium Price as a Function of Number of Firms

98


	Introduction
	Interpolation

	Polynomial Interpolation
	Weierstrass Theorem
	Naive Polynomial Interpolation
	Chebychev Polynomial Interpolation

	Spline Interpolation
	Introduction
	Linear Splines
	Cubic Splines

	Additional Considerations
	Multidimensional Interpolation
	Choosing an Approximation Method

	CompEcon Toolbox
	Functional Equations
	Collocation Method


