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Introduction



Applications

Constrained optimization problems are ubiquitous in
economics:

• Firm maximizes profit subject to resource constraints
• Firm minimizes cost of producing specified output
• Consumer maximizes utility subject to budget constraint
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Definitions

• In the finite-dimensional constrained optimization
problem, one is given a real-valued function f defined on
X ⊂ ℜn and asked to find an x∗ ∈ X such that
f(x∗) ≥ f(x) for all x ∈ X .

• We denote this problem

max
x∈X

f(x)

• We call f the objective function, X the feasible set, and
x∗, if it exists, a maximum or optimum.

• We focus on maximization - to solve a minimization
problem, simply maximize the negative of the objective.
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We say that x∗ ∈ X is a ...

• maximum of f in X if f(x∗) ≥ f(x) for all x ∈ X .
• strict maximum of f in X if f(x∗) > f(x) for all x ∈ X ,
x ̸= x∗.

• local maximum of f in X if f(x∗) ≥ f(x) for all x ∈ X in
some neighborhood of x∗.

• strict local maximum of f in X if f(x∗) > f(x) for all
x ∈ X , x ̸= x∗, in some neighborhood of x∗.
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Weierstrass Extreme Value Theorem

• If f is continuous on a nonempty, closed, and bounded
set X , then f attains a maximum in X .

• The following examples illustrate the role of the
assumptions.

• The function f(x) = x has no maximum on X = ℜ: f is
continuous and X is closed, but not bounded.

• The function f(x) = x has no maximum on X = [0, 1): f is
continuous and X bounded, but not closed.

• The function

f(x) =

1− x x ∈ (0, 1]

0 x = 0

has no maximum on X = [0, 1]: X is closed and bounded,
but f is not continuous.
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Equality Constrained Optimization



Definition

The canonical equality-constrained optimization problem
takes the form

max f(x)

s.t. g(x) = c

where f : ℜn 7→ ℜ and g : ℜn 7→ ℜm are continuously
differentiable functions, f is concave, g is convex, and c ∈ ℜm.

5



Theorem of Lagrange

• Theorem of Lagrange: A vector x∗ maximizes f(x) subject
to g(x) = c if, and only if, there is a vector λ∗ ∈ ℜm such
that (x∗, λ∗) maximizes the Lagrangian

L(x, λ) ≡ f(x) + λ′(c− g(x)).

• In particular, x∗ and λ∗ must simultaneously satisfy

0 =
∂L

∂x
(x∗, λ∗) = f ′(x∗)− λ∗′g′(x∗)

0 =
∂L

∂λ
(x∗, λ∗) = c− g(x∗)
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Envelope Theorem

• The λ∗
i are called shadow prices.

• The Envelope Theorem asserts that under mild
assumptions,

∂f∗

∂ci
= λ∗

i ,

where f∗ is the optimal value of the objective.
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Example 1:

Minimization problem



• Consider
min 2− x21 − x22
s.t. x1 + x2 = k

• The Lagrangian for this problem is

L(x1, x2, λ) = 2− x21 − x22 + λ(k − x1 − x2).

• The first-order conditions are

0 =
∂L

∂x1
(x1, x2, λ) = −2x1 − λ

0 =
∂L

∂x2
(x1, x2, λ) = −2x2 − λ

0 =
∂L

∂λ
(x1, x2, λ) = k − x1 − x2.
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• Solving these conditions yield

x1 = x2 = k/2 and λ = −k

• Thus, the optimal value is

f∗ = 2−
(
k

2

)2

−
(
k

2

)2

= 2− k2

2
.

• Note that

df∗

dk
= −k = λ∗

as guaranteed by the Envelope Theorem.
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Example 2:

Maximization problem



Consider
max −x21 − 2x22 − 2x1x2 + 18

s.t. x1 − x2 = 1

The Lagrangian for this problem is

L(x1, x2, λ) = −x21 − 2x22 − 2x1x2 + 18 + λ(1− x1 + x2).

The first-order conditions are
∂L

∂x1
(x1, x2, λ) = −2x1 − 2x2 − λ = 0

∂L

∂x2
(x1, x2, λ) = −2x1 − 4x2 + λ = 0

∂L

∂λ
(x1, x2, λ) = 1− x1 + x2 = 0.

Solving yields x1 = 0.6, x2 = −0.4, λ = −0.4.
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Example 3:

A firm problem



• A firm produces a single output using two inputs according
to the production function q = xα1x

1−α
2 , where 0 < α < 1.

• The inputs may be bought at competitive wages w1 and w2.
• What is the minimum cost of producing output q?
• The firm’s optimization problem is

min w1x1 + w2x2

s.t. xα1x
1−α
2 = q.
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• The Lagrangian for this problem is

L(x1, x2, λ) = w1x1 + w2x2 + λ(q − xα1x
1−α
2 ).

• The first-order conditions are

0 =
∂L

∂x1
(x1, x2, λ) = w1 − λαxα−1

1 x1−α
2

0 =
∂L

∂x2
(x1, x2, λ) = w2 − λ(1− α)xα1x

−α
2

0 =
∂L

∂λ
(x1, x2, λ) = q − xα1x

1−α
2 .
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• From the first two conditions, we obtain
w1

w2
=

αx2
(1− α)x1

• This implies
x2 =

1− α

α

w1

w2
x1

• Substituting into production constraint and solving yields

x1 = q
(

w2α
w1(1−α)

)1−α

x2 = q
(

w2α
w1(1−α)

)−α
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• After additional algebraic manipulations

λ =
(w1

α

)α
(

w2

1− α

)1−α

• The shadow price is the firm’s marginal cost of production.
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General Constrained Optimization



The most general constrained finite-dimensional optimization
problem that we consider takes the form

max f(x)

s.t. g(x) ≤ b

x ≥ 0

where f : ℜn 7→ ℜ and g : ℜn 7→ ℜm are continuously
differentiable, f is concave, g is convex, and b ∈ ℜm.
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Think of the optimization problem as follows:

• There are n economic activities.
• The level of activity j is denoted xj .
• Activity level xj is inherently nonnegative.
• f(x) is benefit received from activities x.
• Activities require use of m resources.
• An amount gi(x) of resource i is required to sustain
activity x.

• A limited amount bi of resource i available.
• Optimizer seeks activity vector x ≥ 0 that maximize
benefit f(x) subject to resource availability g(x) ≤ b.
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• Karush-Kuhn-Tucker Theorem: A vector x maximizes f(x)
subject to g(x) ≤ b and x ≥ 0 if, and only if, there is a
vector λ ∈ ℜm such that for i = 1, 2, . . . ,m and
j = 1, 2, . . . , n

xj ≥ 0 ⊥ f ′
j(x)−

∑
i λig

′
ij(x) ≤ 0

λi ≥ 0 ⊥ gi(x) ≤ bi.

where f ′
j ≡

∂f

∂xj
and g′ij ≡

∂gi
∂xj

.

• Here, “⊥” indicates complementarity: both inequalities
must hold, and at least one must hold as a strict equality.

• If f is strictly concave, g is convex, and x and λ satisfy
these conditions, then x is unique.
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Consider the problem max f(x) subject to a ≤ x ≤ b:
L = f(x) + λ(x− a) + µ(b− x) ⇒

f ′(x) + λ− µ = 0

λ ≥ 0 x− a ≥ 0 λ(x− a) = 0

µ ≥ 0 b− x ≥ 0 µ(b− x) = 0

a b
x

f(x
)

x a > 0 = 0
b x > 0 = 0

f ′(x) = 0

Internal Maximum

a b
x

f(x
)

x = a 0
b x > 0 = 0

f ′(x) = 0

Corner Maximum

Figure 1: Bound Constrained Optimization 18



• The λi are called shadow prices.
• The Envelope Theorem asserts that under mild
assumptions,

∂f∗

∂bi
= λi,

where f∗ is the optimal value of the objective.
• Thus, λi is the implicit marginal cost of resource i and

MBj(x) = f ′
j(x)−

∑
i

λig
′
ij(x)

is the net marginal economic benefit of activity j, which
equals the explicit marginal benefit of activity j less the
implicit marginal cost of resources required for activity j.
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• The K-K-T complementarity conditions typically admit an
arbitrage interpretation in economic and finance
applications:

xj ≥ 0 activity levels are nonnegative
MBj ≤ 0 otherwise, raise benefit by raising xj

xj > 0 ⇒ MBj ≥ 0 otherwise, raise benefit by lowering xj

MBj < 0 ⇒ xj = 0 avoid unbeneficial activities
λi ≥ 0 shadow price of resource is nonnegative
gi(x) ≤ bi resource use cannot exceed availability
λi > 0 ⇒ gi(x) = bi valuable resources should not be wasted
gi(x) < bi ⇒ λi = 0 surplus resources have no value
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Example 4:

A firm in two markets



• A firm can sell a fixed quantity q in two distinct markets
with inverse demand curves

pi = αi −
βi
2
qi

where qi is quantity sold and pi is price in market i.
• How much should it sell in each market to maximize
revenue?

• The firm’s optimization problem is

max α1q1 − β1

2 q
2
1 + α2q2 − β2

2 q
2
2

s.t. q1 + q2 ≤ q

q1 ≥ 0, q2 ≥ 0
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• The K-K-T conditions for this problem are

q1 ≥ 0 ⊥ α1 − β1q1 − λ ≤ 0

q2 ≥ 0 ⊥ α2 − β2q2 − λ ≤ 0

λ ≥ 0 ⊥ q1 + q2 ≤ q.

• Objective concave, constraint linear, so K-K-T conditions
are necessary and sufficient.

• Answer:
qi =

αi − αj + qβj
β1 + β2

, i ̸= j.

provided q ≥ max{α1−α2
β1

, α2−α1
β2

}.
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The scipy.optimize.minimize function

• Algorithms for solving constrained optimization problems
can be quite involved, so we will not discuss them in this
course.

• We will, however, illustrate how to use scipy.optimize
module function minimize.

• scipy.optimize.minimize solves the canonical
constrained minimization problem:

min f(x) subject to
gi(x) ≥ 0, i = 1, . . . ,m

hj(x) = 0, j = 1, . . . , p

a ≤ x ≤ b

where x ∈ ℜn.
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minimize: calling protocol

minimize(fun, #objective function
x0, #n-vector initial guess
args=(), #extra arguments for function
method=None, #type of solver
bounds=None, #bounds for variables
constraints=()) #constraints

Constraints are passed as a tuple of dictionaries:

cons = ({'type': 'eq', 'fun': h1}, ...
{'type': 'eq', 'fun': hp},
{'type': 'ineq', 'fun': g1}, ...
{'type': 'ineq', 'fun': gm})

while bounds are passed as a tuple of lower-upper pairs:

bnds = ((a1, b1), ..., (an, bn)) 24



minimize: output

Output: an object with these attributes (among others)
x the solution of the optimization

fun value of objective function
message description of the cause of the termination
nfev number of function evaluations
nit number of iteration by the optimizer

success True if solution found
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Example 5:

Using scipy.optimize.minimize



To solve
max −x20 − (x1 − 1)2 − 3x0 + 1

s.t. 4x0 + x1 ≤ 0.5

x20 + x1 ≤ 2.0

x0 ≥ 0, x1 ≥ 0

starting from guess (x0, x1) = (0, 1) execute the script

from scipy.optimize import minimize
def f(x):

return x[0]**2 + (x[1]-1)**2 + 3*x[0] - 2

cons = ({'type': 'ineq',
'fun': lambda x: 0.5 - 4*x[0] - x[1]},

{'type': 'ineq',
'fun': lambda x: 2.0 - x[0]**2 - x[0]*x[1]})

bnds = ((0, None), (0, None))
res = minimize(f, [0.0, 1.0], method='SLSQP',

bounds=bnds, constraints=cons)
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This should produce

fun: 1.0078716929461423e-09
message: 'Optimization terminated successfully.'
nfev: 148
nit: 79
status: 0
success: True
x: array([1. , 1.0001])
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