Lecture 5

Finite-Dimensional Constrained Optimization

Randall Romero Aguilar, PhD
This draft: September 19, 2018

Universidad de Costa Rica
SP6534-Economía Computacional

Table of contents

1. Introduction
2. Equality Constrained Optimization
3. General Constrained Optimization

Introduction

Applications

Constrained optimization problems are ubiquitous in economics:

- Firm maximizes profit subject to resource constraints
- Firm minimizes cost of producing specified output
- Consumer maximizes utility subject to budget constraint

Definitions

- In the finite-dimensional constrained optimization problem, one is given a real-valued function f defined on $X \subset \Re^{n}$ and asked to find an $x^{*} \in X$ such that $f\left(x^{*}\right) \geq f(x)$ for all $x \in X$.
- We denote this problem

$$
\max _{x \in X} f(x)
$$

- We call f the objective function, X the feasible set, and x^{*}, if it exists, a maximum or optimum.
- We focus on maximization - to solve a minimization problem, simply maximize the negative of the objective.

We say that $x^{*} \in X$ is a ...

- maximum of f in X if $f\left(x^{*}\right) \geq f(x)$ for all $x \in X$.
- strict maximum of f in X if $f\left(x^{*}\right)>f(x)$ for all $x \in X$, $x \neq x^{*}$.
- local maximum of f in X if $f\left(x^{*}\right) \geq f(x)$ for all $x \in X$ in some neighborhood of x^{*}.
- strict local maximum of f in X if $f\left(x^{*}\right)>f(x)$ for all $x \in X, x \neq x^{*}$, in some neighborhood of x^{*}.

Weierstrass Extreme Value Theorem

- If f is continuous on a nonempty, closed, and bounded set X, then f attains a maximum in X.
- The following examples illustrate the role of the assumptions.
- The function $f(x)=x$ has no maximum on $X=\Re: f$ is continuous and X is closed, but not bounded.
- The function $f(x)=x$ has no maximum on $X=[0,1): f$ is continuous and X bounded, but not closed.
- The function

$$
f(x)= \begin{cases}1-x & x \in(0,1] \\ 0 & x=0\end{cases}
$$

has no maximum on $X=[0,1]: X$ is closed and bounded, but f is not continuous.

Equality Constrained Optimization

Definition

The canonical equality-constrained optimization problem takes the form

$$
\begin{array}{ll}
\max & f(x) \\
\text { s.t. } & g(x)=c
\end{array}
$$

where $f: \Re^{n} \mapsto \Re$ and $g: \Re^{n} \mapsto \Re^{m}$ are continuously differentiable functions, f is concave, g is convex, and $c \in \Re^{m}$.

Theorem of Lagrange

- Theorem of Lagrange: A vector x^{*} maximizes $f(x)$ subject to $g(x)=c$ if, and only if, there is a vector $\lambda^{*} \in \Re^{m}$ such that $\left(x^{*}, \lambda^{*}\right)$ maximizes the Lagrangian

$$
L(x, \lambda) \equiv f(x)+\lambda^{\prime}(c-g(x))
$$

- In particular, x^{*} and λ^{*} must simultaneously satisfy

$$
\begin{gathered}
0=\frac{\partial L}{\partial x}\left(x^{*}, \lambda^{*}\right)=f^{\prime}\left(x^{*}\right)-\lambda^{*^{\prime}} g^{\prime}\left(x^{*}\right) \\
0=\frac{\partial L}{\partial \lambda}\left(x^{*}, \lambda^{*}\right)=c-g\left(x^{*}\right)
\end{gathered}
$$

Envelope Theorem

- The λ_{i}^{*} are called shadow prices.
- The Envelope Theorem asserts that under mild assumptions,

$$
\frac{\partial f^{*}}{\partial c_{i}}=\lambda_{i}^{*}
$$

where f^{*} is the optimal value of the objective.

Example 1:
Minimization problem

- Consider

$$
\begin{array}{ll}
\min & 2-x_{1}^{2}-x_{2}^{2} \\
\text { s.t. } & x_{1}+x_{2}=k
\end{array}
$$

- The Lagrangian for this problem is

$$
L\left(x_{1}, x_{2}, \lambda\right)=2-x_{1}^{2}-x_{2}^{2}+\lambda\left(k-x_{1}-x_{2}\right) .
$$

- The first-order conditions are

$$
\begin{aligned}
& 0=\frac{\partial L}{\partial x_{1}}\left(x_{1}, x_{2}, \lambda\right)=-2 x_{1}-\lambda \\
& 0=\frac{\partial L}{\partial x_{2}}\left(x_{1}, x_{2}, \lambda\right)=-2 x_{2}-\lambda \\
& 0=\frac{\partial L}{\partial \lambda}\left(x_{1}, x_{2}, \lambda\right)=k-x_{1}-x_{2}
\end{aligned}
$$

- Solving these conditions yield

$$
x_{1}=x_{2}=k / 2 \text { and } \lambda=-k
$$

- Thus, the optimal value is

$$
f^{*}=2-\left(\frac{k}{2}\right)^{2}-\left(\frac{k}{2}\right)^{2}=2-\frac{k^{2}}{2}
$$

- Note that

$$
\frac{d f^{*}}{d k}=-k=\lambda^{*}
$$

as guaranteed by the Envelope Theorem.

Example 2:
Maximization problem

Consider

$$
\begin{array}{ll}
\max & -x_{1}^{2}-2 x_{2}^{2}-2 x_{1} x_{2}+18 \\
\text { s.t. } & x_{1}-x_{2}=1
\end{array}
$$

The Lagrangian for this problem is

$$
L\left(x_{1}, x_{2}, \lambda\right)=-x_{1}^{2}-2 x_{2}^{2}-2 x_{1} x_{2}+18+\lambda\left(1-x_{1}+x_{2}\right) .
$$

The first-order conditions are

$$
\begin{aligned}
\frac{\partial L}{\partial x_{1}}\left(x_{1}, x_{2}, \lambda\right) & =-2 x_{1}-2 x_{2}-\lambda=0 \\
\frac{\partial L}{\partial x_{2}}\left(x_{1}, x_{2}, \lambda\right) & =-2 x_{1}-4 x_{2}+\lambda=0 \\
\frac{\partial L}{\partial \lambda}\left(x_{1}, x_{2}, \lambda\right) & =1-x_{1}+x_{2}=0 .
\end{aligned}
$$

Solving yields $x_{1}=0.6, x_{2}=-0.4, \lambda=-0.4$.

Example 3:
A firm problem

- A firm produces a single output using two inputs according to the production function $q=x_{1}^{\alpha} x_{2}^{1-\alpha}$, where $0<\alpha<1$.
- The inputs may be bought at competitive wages w_{1} and w_{2}.
- What is the minimum cost of producing output q ?
- The firm's optimization problem is

$$
\begin{array}{ll}
\min & w_{1} x_{1}+w_{2} x_{2} \\
\mathrm{s.t.} & x_{1}^{\alpha} x_{2}^{1-\alpha}=q
\end{array}
$$

- The Lagrangian for this problem is

$$
L\left(x_{1}, x_{2}, \lambda\right)=w_{1} x_{1}+w_{2} x_{2}+\lambda\left(q-x_{1}^{\alpha} x_{2}^{1-\alpha}\right)
$$

- The first-order conditions are

$$
\begin{aligned}
& 0= \frac{\partial L}{\partial x_{1}}\left(x_{1}, x_{2}, \lambda\right)=w_{1}-\lambda \alpha x_{1}^{\alpha-1} x_{2}^{1-\alpha} \\
& 0= \frac{\partial L}{\partial x_{2}}\left(x_{1}, x_{2}, \lambda\right)=w_{2}-\lambda(1-\alpha) x_{1}^{\alpha} x_{2}^{-\alpha} \\
& 0=\frac{\partial L}{\partial \lambda}\left(x_{1}, x_{2}, \lambda\right)=q-x_{1}^{\alpha} x_{2}^{1-\alpha} .
\end{aligned}
$$

- From the first two conditions, we obtain

$$
\frac{w_{1}}{w_{2}}=\frac{\alpha x_{2}}{(1-\alpha) x_{1}}
$$

- This implies

$$
x_{2}=\frac{1-\alpha}{\alpha} \frac{w_{1}}{w_{2}} x_{1}
$$

- Substituting into production constraint and solving yields

$$
\begin{aligned}
& x_{1}=q\left(\frac{w_{2} \alpha}{w_{1}(1-\alpha)}\right)^{1-\alpha} \\
& x_{2}=q\left(\frac{w_{2} \alpha}{w_{1}(1-\alpha)}\right)^{-\alpha}
\end{aligned}
$$

- After additional algebraic manipulations

$$
\lambda=\left(\frac{w_{1}}{\alpha}\right)^{\alpha}\left(\frac{w_{2}}{1-\alpha}\right)^{1-\alpha}
$$

- The shadow price is the firm's marginal cost of production.

General Constrained Optimization

The most general constrained finite-dimensional optimization problem that we consider takes the form

$$
\begin{array}{ll}
\max & f(x) \\
\text { s.t. } & g(x) \leq b \\
& x \geq 0
\end{array}
$$

where $f: \Re^{n} \mapsto \Re$ and $g: \Re^{n} \mapsto \Re^{m}$ are continuously differentiable, f is concave, g is convex, and $b \in \Re^{m}$.

Think of the optimization problem as follows:

- There are n economic activities.
- The level of activity j is denoted x_{j}.
- Activity level x_{j} is inherently nonnegative.
- $f(x)$ is benefit received from activities x.
- Activities require use of m resources.
- An amount $g_{i}(x)$ of resource i is required to sustain activity x.
- A limited amount b_{i} of resource i available.
- Optimizer seeks activity vector $x \geq 0$ that maximize benefit $f(x)$ subject to resource availability $g(x) \leq b$.
- Karush-Kuhn-Tucker Theorem: A vector x maximizes $f(x)$ subject to $g(x) \leq b$ and $x \geq 0$ if, and only if, there is a vector $\lambda \in \Re^{m}$ such that for $i=1,2, \ldots, m$ and $j=1,2, \ldots, n$

$$
\begin{aligned}
& x_{j} \geq 0 \perp f_{j}^{\prime}(x)-\sum_{i} \lambda_{i} g_{i j}^{\prime}(x) \leq 0 \\
& \lambda_{i} \geq 0 \perp g_{i}(x) \leq b_{i} .
\end{aligned}
$$

where $f_{j}^{\prime} \equiv \frac{\partial f}{\partial x_{j}}$ and $g_{i j}^{\prime} \equiv \frac{\partial g_{i}}{\partial x_{j}}$.

- Here, " \perp " indicates complementarity: both inequalities must hold, and at least one must hold as a strict equality.
- If f is strictly concave, g is convex, and x and λ satisfy these conditions, then x is unique.

Consider the problem max $f(x)$ subject to $a \leq x \leq b$:

$$
L=f(x)+\lambda(x-a)+\mu(b-x) \quad \Rightarrow
$$

$$
f^{\prime}(x)+\lambda-\mu=0
$$

$$
\begin{array}{lll}
\lambda \geq 0 & x-a \geq 0 & \lambda(x-a)=0 \\
\mu \geq 0 & b-x \geq 0 & \mu(b-x)=0
\end{array}
$$

Figure 1: Bound Constrained Optimization

- The λ_{i} are called shadow prices.
- The Envelope Theorem asserts that under mild assumptions,

$$
\frac{\partial f^{*}}{\partial b_{i}}=\lambda_{i}
$$

where f^{*} is the optimal value of the objective.

- Thus, λ_{i} is the implicit marginal cost of resource i and

$$
M B_{j}(x)=f_{j}^{\prime}(x)-\sum_{i} \lambda_{i} g_{i j}^{\prime}(x)
$$

is the net marginal economic benefit of activity j, which equals the explicit marginal benefit of activity j less the implicit marginal cost of resources required for activity j.

- The K-K-T complementarity conditions typically admit an arbitrage interpretation in economic and finance applications:
$x_{j} \geq 0$
$M B_{j} \leq 0$
$x_{j}>0 \Rightarrow M B_{j} \geq 0 \quad$ otherwise, raise benefit by lowering x_{j}
$M B_{j}<0 \Rightarrow x_{j}=0 \quad$ avoid unbeneficial activities
$\lambda_{i} \geq 0$
$g_{i}(x) \leq b_{i}$
$\lambda_{i}>0 \Rightarrow g_{i}(x)=b_{i} \quad$ valuable resources should not be wasted
$g_{i}(x)<b_{i} \Rightarrow \lambda_{i}=0 \quad$ surplus resources have no value

Example 4:
A firm in two markets

- A firm can sell a fixed quantity q in two distinct markets with inverse demand curves

$$
p_{i}=\alpha_{i}-\frac{\beta_{i}}{2} q_{i}
$$

where q_{i} is quantity sold and p_{i} is price in market i.

- How much should it sell in each market to maximize revenue?
- The firm's optimization problem is

$$
\begin{array}{ll}
\max & \alpha_{1} q_{1}-\frac{\beta_{1}}{2} q_{1}^{2}+\alpha_{2} q_{2}-\frac{\beta_{2}}{2} q_{2}^{2} \\
\text { s.t. } & q_{1}+q_{2} \leq q \\
& q_{1} \geq 0, q_{2} \geq 0
\end{array}
$$

- The K-K-T conditions for this problem are

$$
\begin{aligned}
& q_{1} \geq 0 \perp \alpha_{1}-\beta_{1} q_{1}-\lambda \leq 0 \\
& q_{2} \geq 0 \perp \alpha_{2}-\beta_{2} q_{2}-\lambda \leq 0 \\
& \lambda \geq 0 \perp q_{1}+q_{2} \leq q .
\end{aligned}
$$

- Objective concave, constraint linear, so K-K-T conditions are necessary and sufficient.
- Answer:

$$
q_{i}=\frac{\alpha_{i}-\alpha_{j}+q \beta_{j}}{\beta_{1}+\beta_{2}}, \quad i \neq j .
$$

provided $q \geq \max \left\{\frac{\alpha_{1}-\alpha_{2}}{\beta_{1}}, \frac{\alpha_{2}-\alpha_{1}}{\beta_{2}}\right\}$.

The scipy.optimize.minimize function

- Algorithms for solving constrained optimization problems can be quite involved, so we will not discuss them in this course.
- We will, however, illustrate how to use scipy.optimize module function minimize.
- scipy.optimize.minimize solves the canonical constrained minimization problem:

$$
\begin{aligned}
\min f(x) & \quad \text { subject to } \\
g_{i}(x) & \geq 0, \quad i=1, \ldots, m \\
h_{j}(x) & =0, \quad j=1, \ldots, p \\
a & \leq x \leq b
\end{aligned}
$$

where $x \in \Re^{n}$.

minimize: calling protocol

minimize(fun, \#objective function x0, \#n-vector initial guess args=(), \#extra arguments for function method=None, \#type of solver bounds=None, \#bounds for variables constraints=()) \#constraints

Constraints are passed as a tuple of dictionaries:

```
cons = ({'type': 'eq', 'fun': h1}, ...
    {'type': 'eq', 'fun': hp},
    {'type': 'ineq', 'fun': g1}, ...
    {'type': 'ineq', 'fun': gm})
```

while bounds are passed as a tuple of lower-upper pairs:
bnds $=((a 1, b 1), \ldots,(a n, b n))$

minimize: output

Output: an object with these attributes (among others)
$x \quad$ the solution of the optimization
fun value of objective function
message description of the cause of the termination
nfev number of function evaluations
nit number of iteration by the optimizer
success True if solution found

Example 5:
Using scipy.optimize.minimize

To solve

$$
\begin{array}{ll}
\max & -x_{0}^{2}-\left(x_{1}-1\right)^{2}-3 x_{0}+1 \\
\text { s.t. } & 4 x_{0}+x_{1} \leq 0.5 \\
& x_{0}^{2}+x_{1} \leq 2.0 \\
& x_{0} \geq 0, x_{1} \geq 0
\end{array}
$$

starting from guess $\left(x_{0}, x_{1}\right)=(0,1)$ execute the script
from scipy.optimize import minimize def $f(x)$:

$$
\text { return } x[0] * * 2+(x[1]-1) * * 2+3 * x[0]-2
$$

```
cons = (\{'type': 'ineq',
                            'fun': lambda x: 0.5 - 4*x[0] - x[1]\},
\{'type': 'ineq',
            'fun': lambda x: \(2.0-x[0] * * 2-x[0] * x[1]\})\)
```

bnds = ((0, None), (0, None))
res = minimize(f, [0.0, 1.0], method='SLSQP',
bounds=bnds, constraints=cons)

This should produce

```
fun: 1.0078716929461423e-09
message: 'Optimization terminated successfully.'
nfev: }14
nit: 79
status: 0
success: True
x: array([1. , 1.0001])
```

