
Lecture 4
Finite-Dimensional Unconstrained Optimization

Randall Romero Aguilar, PhD
This draft: September 19, 2018

Universidad de Costa Rica
SP6534 - Economía Computacional

Table of contents

1. Basic Theory

2. Numerical Algorithms

3. Numerical Examples

4. Special Cases

Basic Theory

Applications

Unconstrained optimization problems are ubiquitous in
economics:

• Government maximizes social welfare
• Competitive equilibrium maximizes total surplus
• Ordinary least squares estimator minimizes sum of
squares

• Maximum likelihood estimator maximizes likelihood
function

1

Definitions

• In the finite-dimensional unconstrained optimization
problem, one is given a function f : ℜn 7→ ℜ and asked to
find an x∗ such that f(x∗) ≥ f(x) for all x.

• We call f the objective function and x∗, if it exists, the
global maximum of f .

• We focus on maximization - to solve a minimization
problem, simply maximize the negative of the objective.

2

We say that x∗ ∈ ℜn is a ...

• strict global maximum of f if f(x∗) > f(x) for all x ̸= x∗.
• local maximum of f if f(x∗) ≥ f(x) for all x in some
neighborhood of x∗.

• strict local maximum of f if f(x∗) > f(x) for all x ̸= x∗ in
some neighborhood of x∗.

3

Optimality Conditions

• Let f : ℜn 7→ ℜ be twice continuously differentiable.
• First Order Necessary Condition: If x∗ is a local maximum
of f , then f ′(x∗) = 0.

• Second Order Necessary Condition: If x∗ is a local
maximum of f , then f ′′(x∗) is negative semidefinite.

• We say x is a critical point of f if it satisfies the first-order
necessary condition.

4

• Sufficient Condition: If f ′(x∗) = 0 and f ′′(x∗) is negative
definite, then x∗ is a strict local maximum of f .

• Local-Global Theorem: If f is concave, and x∗ is a local
maximum of f , then x∗ is a global maximum of f .

5

Example 1:

Maximizing
f (x) = x3 − 12x2 + 36x + 8

• Consider maximizing

f(x) = x3 − 12x2 + 36x+ 8.

• The first-order necessary condition

f ′(x) = 3x2 − 24x+ 36 = 3(x− 6)(x− 2) = 0

• ... is satisfied at the critical points x = 2 and x = 6.

6

• Since
f ′′(x) = 6x− 24

it follows that

f ′′(2) = −12 < 0 and f ′′(6) = 12 > 0

• Thus,
• x = 2 satisfies the sufficient condition for a strict local
maximum, but

• x = 6 fails the second-order necessary condition for a
local maximum.

7

Example 2:

Maximizing
f (x) = 3−x21−x22−x1x2+2x1+x2

• Consider maximizing

f(x) = 3− x21 − x22 − x1x2 + 2x1 + x2.

• The first-order necessary condition

f ′(x) =

[
−2x1 − x2 + 2

−x1 − 2x2 + 1

]
= 0

• ... is satisfied at the critical point x1 = 1 and x2 = 0.

8

• The Hessian at the critical point

f ′′(x) =

[
−2 −1

−1 −2

]
has characteristic equation

det

[
−2− λ −1

−1 −2− λ

]
= λ2+4λ+3 = (λ+3)(λ+1) = 0.

• The Hessian has negative eigenvalues, −3 and −1, and
thus is negative definite.

• Thus, x = (1, 0) satisfies the sufficient condition for a
strict local maximum.

9

Envelope Theorem

• The Envelope Theorem tells us how the maximum value of
a function varies with respect to a parameter.

• Let f : ℜn+1 7→ ℜ be a real-valued continuously
differentiable function. If

V (α) = max
x∈ℜn

f(x, α)

is well-defined and x(α) solves the maximization problem,
then

V ′(α) =
∂f(x(α), α)

∂α
.

10

Example 3:

Envelope theorem

• If f(x, α) = αx− 0.5x2, then

V (α) ≡ max
x

f(x, α) = 0.5α2

• Thus
V ′(α) = α.

• For each α, the maximum is x(α) = α, so that, by the
Envelope Theorem,

V ′(α) =
∂f(x(α), α)

∂α
= x(α) = α.

as expected.

11

Numerical Algorithms

Newton-Raphson Method

• The Newton-Raphson method maximizes an objective f

using successive quadratic approximations.
• Given the kth iterate xk , the subsequent iterate xk+1 is
computed by maximizing the quadratic approximation to
f about xk :

f(x) ≈ f (xk)+f ′ (xk) (x− xk)+
1
2 (x− xk)

′ f ′′ (xk) (x− xk) .

• Solving the first-order condition

f ′ (xk) + f ′′ (xk) (x− xk) = 0,

yields the iteration rule

xk+1 = xk −
[
f ′′ (xk)

]−1
f ′ (xk) .

12

• The Newton-Raphson method is identical to using
Newton’s method to compute the root of the gradient of
the objective.

• In theory, it will converge if the initial value is “close” to a
critical point of f at which the Hessian is non-singular.

• In practice, it will diverge if the initial value is “far” from a
critical point or the Hessian becomes ill-conditioned.

• Moreover, it may converge to a critical point that is not a
local maximum, so the second-order necessary condition
should always be checked.

• Newton-Raphson can be robust to the starting value if f is
globally concave, but sensitive otherwise.

13

• Newton-Raphson has two drawbacks.
• First, it requires computation of both the first and second
derivatives.

• Second, it may not be possible to increase the objective in
the direction of the Newton step ... this is guaranteed only
if f ′′ (xk) is negative definite.

• For this reason, the Newton-Raphson is rarely used in
practice, and then only if the objective is globally concave.

14

Quasi-Newton Methods

• In analogy with the Newton-Raphson method,
quasi-Newton methods update iterates in the direction of
the vector

dk = −Akf
′ (xk)

where Ak is an approximation to the inverse Hessian of f
at the kth iterate xk .

• The vector dk is called the Newton or quasi-Newton step.

15

• Just as with rootfinding problems, it is not always best to
take a full Newton step at each iteration.

• Efficient quasi-Newton methods shorten or lengthen the
Newton step to increase gains in the objective.

• This is accomplished by performing a line search in which
the Newton step is re-scaled by a factor s > 0 that
maximizes or nearly maximizes f (xk + sdk).

• Given the computed scaling factor sk , one updates the
iterate as follows:

xk+1 = xk + skdk.

16

• In practice, a thorough line search is not necessary.
• Typically, it suffices to assure that the objective increases
with each iteration.

• A number of different line search methods are used in
practice.

• Line search methods are beyond the scope of the course,
but are discussed in most books on applied optimization.

• The CompEcon Toolbox offers four line search methods.

17

• Quasi-Newton algorithms differ in how the inverse
Hessian approximation Ak is constructed and updated.

• Efficient algorithms use negative definite inverse Hessian
approximations, guaranteeing the objective can be
increased in the direction of the Newton step.

• Efficient quasi-Newton algorithms also employ updating
rules that do not require computing second derivatives.

• The CompEcon Toolbox offers three update methods.

18

• The simplest quasi-Newton method sets Ak = −I , where I

is the identity matrix, leading to a Newton step that is
identical to the gradient of the objective:

dk = f ′ (xk) .

• This is called the method of steepest ascent because the
gradient, to a first order, promises the greatest increase in
f .

• The steepest ascent method is simple, but numerically
less efficient in practice than quasi-Newton methods that
employ curvature information.

19

• The most widely-used quasi-Newton methods employ
inverse Hessian update rules that satisfy two conditions.

• First, the inverse Hessian update Ak+1 is required to
satisfy the quasi-Newton condition:

xk+1 − xk = Ak+1

(
f ′(xk+1)− f ′(xk)

)
.

• Second, the inverse Hessian update is required to be
symmetric negative definite to assure the objective can be
increased in the direction of the Newton step.

• Two updating methods that satisfy the quasi-Newton and
negative definiteness conditions are widely used in
practice.

20

• The Davidson-Fletcher-Powell (DFP) method uses the
updating scheme

Ak+1 = Ak +
vkv

′
k

u′kvk
−

Akuku
′
kA

′
k

u′kAkuk
,

where
vk = xk+1 − xk

and
uk = f ′(xk+1)− f ′(xk).

21

• The Broyden-Fletcher-Goldfarb-Shano (BFGS) method
uses the update scheme

Ak+1 = Ak +
1

v′kuk

(
wkv

′
k + vkw

′
k −

u′kwk

u′kvk
vkv

′
k

)
,

where
wk = vk −Akuk.

• BFGS typically outperforms DFP, although there are
problems for which DFP outperforms BFGS.

22

• Quasi-Newton methods are susceptible to certain
problems.

• In both update formulae there is a division by v′kuk .
• If this value becomes very small in absolute value,
numerical instabilities will result.

• Thus, it is best to skip updating Ak or replace it with a
scaled negative identity matrix if the value becomes too
small.

23

Numerical Examples

The OP class

• The CompEcon package provides class OP (optimization
problem) for computing the maximum of function
f : ℜn 7→ ℜ.

• A optimization problem is created as follows:
from compecon import OP

def f(x): #objective function
return ... #function value

problem = OP(f)
x0 = ... #initial guess
x = problem.qnewton(x0) #local maximum of f

• Users may use chose different inverse Hessian update
and line search methods.

24

Example 4:

Local maximum of
x3 − 12x2 + 36x + 8

• To maximize

f(x) = x3 − 12x2 + 36x+ 8

starting from x = 4, execute the script
F = OP(lambda x: x**3 - 12*x**2 + 36*x + 8)
x = F.qnewton(x0=4.0)

• After 9 iterations, this produces
x = [2.]

0 2 4 6 8

10

15

20

25

30

35

40

45

Figure 1: Function f(x) = x3 − 12x2 + 36x+ 8

25

• To check the first and second derivatives, execute the
script

J = F.jacobian(x)
H = F.hessian(x)
E = np.linalg.eig(H)[0]

• This produces
J = [-0.]
E = [-12.]

• Thus, x = 2 is a strict local maximum.

26

Example 5:

Maximum of
g(x, y) = 5− 4x2 − 2y2 − 4xy − 2y

• To maximize

g(x, y) = 5− 4x2 − 2y2 − 4xy − 2y

starting from x = (0, 0), execute the script
def g(z):

x, y = z
return 5 - 4*x**2 - 2*y**2 - 4*x*y - 2*y

G = OP(g)
x = G.qnewton(x0=[-1, 1])

• After 3 iterations, this produces
x = [0.5 -1.]

27

• To check the Jacobian and the eigenvalues of the Hessian,
execute the script

J = G.jacobian(x)
E = np.linalg.eig(G.hessian(x))[0]

• This produces
J = [0. 0.]
E = [-10.4721 -1.5279]

• Thus, x = (0.5,−1.0) is a strict local maximum.

x0

1
0

1
2

x1

2.5

1.5

0.5

0.5

g(
x 0

, x
1)

15.0
12.5
10.0
7.5
5.0
2.5
0.0
2.5
5.0

Figure 2: Function g(x, y) = 5− 4x2 − 2y2 − 4xy − 2y

28

Example 6:

Maximize the Rosencrantz
function

• To maximize the Rosencrantz or “banana” function

f(x, y) = −100(y − x2)2 − (1− x)2

starting from x0 = (1, 0), execute the script
def f(z):

x, y = z
return -100 * (y - x**2)**2 - (1 - x)**2

x0 = [1, 0]
banana = OP(f)
x = banana.qnewton(x0)

• After 27 iterations, this produces
x = [1. 1.]

29

• To check the Jacobian and the eigenvalues of the Hessian,
execute the script

J = banana.jacobian(x)
E = np.linalg.eig(banana.hessian(x))[0]

• This produces
J = [-0. 0.]
E = [-1001.6006 -0.3994]

• Thus, x = (1, 1) is a strict local maximum.

30

• To maximize the function using other method, one may
override the default update method as follows:

banana.qnewton(x0, SearchMeth='steepest')
banana.qnewton(x0, SearchMeth='bfgs')
banana.qnewton(x0, SearchMeth='dfp')

• ’steepest’ fails to find the optimum after 250 iterations,
the default maximum allowable. The search paths are:

0 1
x

0.00

0.25

0.50

0.75

1.00

y

STEEPEST search

0 1
x

0.00

0.25

0.50

0.75

1.00

y
BFGS search

0 1
x

0.00

0.25

0.50

0.75

1.00

y

DFP search

Figure 3: Maximization of Rosencrantz Function
31

Special Cases

• Two special classes of optimization problems arise often
in econometrics and warrant additional discussion.

• Nonlinear least squares and maximum likelihood have
special structures that give rise to efficient quasi-Newton
methods that use different inverse Hessian
approximations.

• Because these problems generally arise in statistical
applications, we alter our notation to conform with the
conventions for those applications.

• Optimization takes place with respect to a k-dimensional
parameter vector θ and n will refer to the number of
observations.

32

• The nonlinear least squares problem takes the form

min
θ

1
2f(θ)

⊤f(θ) = min
θ

n∑
i=i

1
2f

2
i (θ)

where f : ℜk → ℜn.
• This objective has gradient

n∑
i=1

f ′
i(θ)fi(θ) = f ′(θ)⊤f(θ)

and Hessian

f ′(θ)⊤f ′(θ) +

n∑
i=1

fi(θ)
∂2f(θ)

∂θ∂θ⊤
.

• Ignoring the second term in the Hessian yields a positive
definite matrix with which to determine the search
direction:

d = −
[
f ′(θ)⊤f ′(θ)

]−1
f ′(θ)⊤f(θ).

33

Example 7:

Nonlinear least squares
estimation

Greene (2012, p.191) considers the following nonlinear
consumption function

C = α+ β ∗ Y γ + ϵ

which is estimated with quarterly data on real consumption
and disposable income for the U.S. economy for 1950 to 2000.

1949 1959 1969 1979 1989 1999

2000

4000

6000

8000

Y
C

Figure 4: Income and consumption in the U.S.

34

To get the data

import pandas as pd
data = pd.read_table('TableF5-2.txt',sep='\s+')
Y, C = data[['realgdp','realcons']].values.T

The objective function is the (negative) of the sum of
squared-residuals

def ssr(θ):
α, β, γ = θ
residuals = C - α - β*Y**γ
return -(residuals**2).sum()

35

We find the nonlinear least squares estimator, starting from
guess (α, β, γ) = (0, 0, 1)

from compecon import OP
θnlls = OP(ssr).qnewton([0.0, 0.0, 1.0])

This returns (α, β, γ) =

[-91.1965 0.5691 1.0204]

This result is not the same found in Greene’s textbook, but it
can be reproduced with Stata:

import delimited TableF5-2.txt, delimiter(space, collapse)
nl (realcons = {alpha=0.0} + {beta=0.0}*realgdp ^{gamma=1.0})

36

• Maximum likelihood problems are specified by a choice of
a distribution function f for the data y that depends on a
parameter vector θ.

• The log-likelihood function is the sum of the logs of the
likelihoods of each of the data points:

l(θ; y) =

n∑
i=1

ln f(θ; yi).

• The score function is defined as the n× k matrix of
derivatives of the log-likelihood function evaluated at
each observation:

si(θ; y) =
∂l(θ; yi)

∂θ
.

37

• A well-known result in statistical theory is that the
expectation of the inner product of the score function is
the negative of the expectation of the Hessian of the
likelihood function.

• The sample average of the inner product of the score
function thus provides a reasonable positive definite
approximation of the Hessian that can be used to
determine a search direction:

d = −
[
s(θ; y)⊤s(θ, y)

]−1
s(θ, y)′1n,

where 1n is an n-vector of ones.
• This approach is known as the modified method of
scoring.

38

Example 8:

Maximum likelihood estimation

Greene (2012, p.590) considers the following binary choice
model

P[GRADE = 1] = F (β0 + β1GPA+ β2TUCE+ β3PSI)

where F is cumulative distribution function for either the
normal distribution (probit) or the logistic distibution (logit).

39

To get the data, as well as the cdf for the normal and logistic
distributions:

from scipy.stats import norm, logistic

data = pd.read_table('TableF14-1.txt',sep='\s+')
data['intercept'] = 1
regressors = ['intercept', 'GPA','TUCE','PSI']

X = data[regressors]
y = data['GRADE']

40

The log-likelihood function for a binary model is given by

lnL =

n∑
i=1

{
yi lnF (x′iβ) + (1− yi) ln[1− F (x′iβ)]

}
which we code as

def binary_model(β,distribution):
F = distribution.cdf(X @ β)
return (y*np.log(F) + (1-y)*np.log(1-F)).sum()

def logL_logit(β):
return binary_model(β,logistic)

def logL_probit(β):
return binary_model(β,norm)

41

We then estimate the model

β0 = np.zeros(4) # initial guess

β_logit = OP(logL_logit).qnewton(β0, SearchMeth='bfgs')
β_probit = OP(logL_probit).qnewton(β_logit/2, SearchMeth='bfgs')

pd.DataFrame({'logit':β_logit,'probit':β_probit},
index=regressors)

which returns

logit probit
intercept -13.021 -7.452
GPA 2.826 1.626
TUCE 0.095 0.052
PSI 2.379 1.426

42

These results can be reproduced with Stata:

infix obs 1-3 gpa 10-14 tuce 19-23 psi 28 grade 37...
using TableF14-1.txt in 2/33

logit grade gpa tuce psi
probit grade gpa tuce psi

43

References

Greene, William H. (2012). Econometric Analysis. 7th ed.
Prentice Hall. isbn: 978-0-13-139538-1.

Miranda, Mario J. and Paul L. Fackler (2002). Applied
Computational Economics and Finance. MIT Press. isbn:
0-262-13420-9.

44

	Basic Theory
	Numerical Algorithms
	Numerical Examples
	Special Cases

