Finite-Dimensional Unconstrained Optimization

Randall Romero Aguilar, PhD
This draft: September 19, 2018

Universidad de Costa Rica
SP6534-Economía Computacional

Table of contents

1. Basic Theory
2. Numerical Algorithms
3. Numerical Examples
4. Special Cases

Basic Theory

Applications

Unconstrained optimization problems are ubiquitous in economics:

- Government maximizes social welfare
- Competitive equilibrium maximizes total surplus
- Ordinary least squares estimator minimizes sum of squares
- Maximum likelihood estimator maximizes likelihood function

Definitions

- In the finite-dimensional unconstrained optimization problem, one is given a function $f: \Re^{n} \mapsto \Re$ and asked to find an x^{*} such that $f\left(x^{*}\right) \geq f(x)$ for all x.
- We call f the objective function and x^{*}, if it exists, the global maximum of f.
- We focus on maximization - to solve a minimization problem, simply maximize the negative of the objective.

We say that $x^{*} \in \Re^{n}$ is a ...

- strict global maximum of f if $f\left(x^{*}\right)>f(x)$ for all $x \neq x^{*}$.
- Local maximum of f if $f\left(x^{*}\right) \geq f(x)$ for all x in some neighborhood of x^{*}.
- strict local maximum of f if $f\left(x^{*}\right)>f(x)$ for all $x \neq x^{*}$ in some neighborhood of x^{*}.

Optimality Conditions

- Let $f: \Re^{n} \mapsto \Re$ be twice continuously differentiable.
- First Order Necessary Condition: If x^{*} is a local maximum of f, then $f^{\prime}\left(x^{*}\right)=0$.
- Second Order Necessary Condition: If x^{*} is a local maximum of f, then $f^{\prime \prime}\left(x^{*}\right)$ is negative semidefinite.
- We say x is a critical point of f if it satisfies the first-order necessary condition.
- Sufficient Condition: If $f^{\prime}\left(x^{*}\right)=0$ and $f^{\prime \prime}\left(x^{*}\right)$ is negative definite, then x^{*} is a strict local maximum of f.
- Local-Global Theorem: If f is concave, and x^{*} is a local maximum of f, then x^{*} is a global maximum of f.

Example 1: Maximizing

$$
f(x)=x^{3}-12 x^{2}+36 x+8
$$

- Consider maximizing

$$
f(x)=x^{3}-12 x^{2}+36 x+8
$$

- The first-order necessary condition

$$
f^{\prime}(x)=3 x^{2}-24 x+36=3(x-6)(x-2)=0
$$

- ... is satisfied at the critical points $x=2$ and $x=6$.
- Since

$$
f^{\prime \prime}(x)=6 x-24
$$

it follows that

$$
f^{\prime \prime}(2)=-12<0 \quad \text { and } \quad f^{\prime \prime}(6)=12>0
$$

- Thus,
- $x=2$ satisfies the sufficient condition for a strict local maximum, but
- $x=6$ fails the second-order necessary condition for a local maximum.

Example 2:
Maximizing
$f(x)=3-x_{1}^{2}-x_{2}^{2}-x_{1} x_{2}+2 x_{1}+x_{2}$

- Consider maximizing

$$
f(x)=3-x_{1}^{2}-x_{2}^{2}-x_{1} x_{2}+2 x_{1}+x_{2}
$$

- The first-order necessary condition

$$
f^{\prime}(x)=\left[\begin{array}{l}
-2 x_{1}-x_{2}+2 \\
-x_{1}-2 x_{2}+1
\end{array}\right]=0
$$

- ... is satisfied at the critical point $x_{1}=1$ and $x_{2}=0$.
- The Hessian at the critical point

$$
f^{\prime \prime}(x)=\left[\begin{array}{ll}
-2 & -1 \\
-1 & -2
\end{array}\right]
$$

has characteristic equation

$$
\operatorname{det}\left[\begin{array}{cc}
-2-\lambda & -1 \\
-1 & -2-\lambda
\end{array}\right]=\lambda^{2}+4 \lambda+3=(\lambda+3)(\lambda+1)=0
$$

- The Hessian has negative eigenvalues, -3 and -1 , and thus is negative definite.
- Thus, $x=(1,0)$ satisfies the sufficient condition for a strict local maximum.

Envelope Theorem

- The Envelope Theorem tells us how the maximum value of a function varies with respect to a parameter.
- Let $f: \Re^{n+1} \mapsto \Re$ be a real-valued continuously differentiable function. If

$$
V(\alpha)=\max _{x \in \Re^{n}} f(x, \alpha)
$$

is well-defined and $x(\alpha)$ solves the maximization problem, then

$$
V^{\prime}(\alpha)=\frac{\partial f(x(\alpha), \alpha)}{\partial \alpha}
$$

Example 3:
Envelope theorem

- If $f(x, \alpha)=\alpha x-0.5 x^{2}$, then

$$
V(\alpha) \equiv \max _{x} f(x, \alpha)=0.5 \alpha^{2}
$$

- Thus

$$
V^{\prime}(\alpha)=\alpha
$$

- For each α, the maximum is $x(\alpha)=\alpha$, so that, by the Envelope Theorem,

$$
V^{\prime}(\alpha)=\frac{\partial f(x(\alpha), \alpha)}{\partial \alpha}=x(\alpha)=\alpha .
$$

as expected.

Numerical Algorithms

Newton-Raphson Method

- The Newton-Raphson method maximizes an objective f using successive quadratic approximations.
- Given the $k^{\text {th }}$ iterate x_{k}, the subsequent iterate x_{k+1} is computed by maximizing the quadratic approximation to f about x_{k} :

$$
f(x) \approx f\left(x_{k}\right)+f^{\prime}\left(x_{k}\right)\left(x-x_{k}\right)+\frac{1}{2}\left(x-x_{k}\right)^{\prime} f^{\prime \prime}\left(x_{k}\right)\left(x-x_{k}\right) .
$$

- Solving the first-order condition

$$
f^{\prime}\left(x_{k}\right)+f^{\prime \prime}\left(x_{k}\right)\left(x-x_{k}\right)=0
$$

yields the iteration rule

$$
x_{k+1}=x_{k}-\left[f^{\prime \prime}\left(x_{k}\right)\right]^{-1} f^{\prime}\left(x_{k}\right) .
$$

- The Newton-Raphson method is identical to using Newton's method to compute the root of the gradient of the objective.
- In theory, it will converge if the initial value is "close" to a critical point of f at which the Hessian is non-singular.
- In practice, it will diverge if the initial value is "far" from a critical point or the Hessian becomes ill-conditioned.
- Moreover, it may converge to a critical point that is not a local maximum, so the second-order necessary condition should always be checked.
- Newton-Raphson can be robust to the starting value if f is globally concave, but sensitive otherwise.
- Newton-Raphson has two drawbacks.
- First, it requires computation of both the first and second derivatives.
- Second, it may not be possible to increase the objective in the direction of the Newton step ... this is guaranteed only if $f^{\prime \prime}\left(x_{k}\right)$ is negative definite.
- For this reason, the Newton-Raphson is rarely used in practice, and then only if the objective is globally concave.

Quasi-Newton Methods

- In analogy with the Newton-Raphson method, quasi-Newton methods update iterates in the direction of the vector

$$
d_{k}=-A_{k} f^{\prime}\left(x_{k}\right)
$$

where A_{k} is an approximation to the inverse Hessian of f at the $k^{\text {th }}$ iterate x_{k}.

- The vector d_{k} is called the Newton or quasi-Newton step.
- Just as with rootfinding problems, it is not always best to take a full Newton step at each iteration.
- Efficient quasi-Newton methods shorten or lengthen the Newton step to increase gains in the objective.
- This is accomplished by performing a line search in which the Newton step is re-scaled by a factor $s>0$ that maximizes or nearly maximizes $f\left(x_{k}+s d_{k}\right)$.
- Given the computed scaling factor s_{k}, one updates the iterate as follows:

$$
x_{k+1}=x_{k}+s_{k} d_{k}
$$

- In practice, a thorough line search is not necessary.
- Typically, it suffices to assure that the objective increases with each iteration.
- A number of different line search methods are used in practice.
- Line search methods are beyond the scope of the course, but are discussed in most books on applied optimization.
- The CompEcon Toolbox offers four line search methods.
- Quasi-Newton algorithms differ in how the inverse Hessian approximation A_{k} is constructed and updated.
- Efficient algorithms use negative definite inverse Hessian approximations, guaranteeing the objective can be increased in the direction of the Newton step.
- Efficient quasi-Newton algorithms also employ updating rules that do not require computing second derivatives.
- The CompEcon Toolbox offers three update methods.
- The simplest quasi-Newton method sets $A_{k}=-I$, where I is the identity matrix, leading to a Newton step that is identical to the gradient of the objective:

$$
d_{k}=f^{\prime}\left(x_{k}\right) .
$$

- This is called the method of steepest ascent because the gradient, to a first order, promises the greatest increase in f.
- The steepest ascent method is simple, but numerically less efficient in practice than quasi-Newton methods that employ curvature information.
- The most widely-used quasi-Newton methods employ inverse Hessian update rules that satisfy two conditions.
- First, the inverse Hessian update A_{k+1} is required to satisfy the quasi-Newton condition:

$$
x_{k+1}-x_{k}=A_{k+1}\left(f^{\prime}\left(x_{k+1}\right)-f^{\prime}\left(x_{k}\right)\right) .
$$

- Second, the inverse Hessian update is required to be symmetric negative definite to assure the objective can be increased in the direction of the Newton step.
- Two updating methods that satisfy the quasi-Newton and negative definiteness conditions are widely used in practice.
- The Davidson-Fletcher-Powell (DFP) method uses the updating scheme

$$
A_{k+1}=A_{k}+\frac{v_{k} v_{k}^{\prime}}{u_{k}^{\prime} v_{k}}-\frac{A_{k} u_{k} u_{k}^{\prime} A_{k}^{\prime}}{u_{k}^{\prime} A_{k} u_{k}}
$$

where

$$
v_{k}=x_{k+1}-x_{k}
$$

and

$$
u_{k}=f^{\prime}\left(x_{k+1}\right)-f^{\prime}\left(x_{k}\right) .
$$

- The Broyden-Fletcher-Goldfarb-Shano (BFGS) method uses the update scheme

$$
A_{k+1}=A_{k}+\frac{1}{v_{k}^{\prime} u_{k}}\left(w_{k} v_{k}^{\prime}+v_{k} w_{k}^{\prime}-\frac{u_{k}^{\prime} w_{k}}{u_{k}^{\prime} v_{k}} v_{k} v_{k}^{\prime}\right)
$$

where

$$
w_{k}=v_{k}-A_{k} u_{k} .
$$

- BFGS typically outperforms DFP, although there are problems for which DFP outperforms BFGS.
- Quasi-Newton methods are susceptible to certain problems.
- In both update formulae there is a division by $v_{k}^{\prime} u_{k}$.
- If this value becomes very small in absolute value, numerical instabilities will result.
- Thus, it is best to skip updating A_{k} or replace it with a scaled negative identity matrix if the value becomes too small.

Numerical Examples

The OP class

- The CompEcon package provides class OP (optimization problem) for computing the maximum of function $f: \Re^{n} \mapsto \Re$.
- A optimization problem is created as follows:

from compecon import OP

def $f(x):$ \#objective function return ... \#function value
problem = OP(f)
x0 = ... \#initial guess
$x=$ problem.qnewton(x0) \#local maximum of f

- Users may use chose different inverse Hessian update and line search methods.

Example 4:

Local maximum of

$$
x^{3}-12 x^{2}+36 x+8
$$

- To maximize

$$
f(x)=x^{3}-12 x^{2}+36 x+8
$$

starting from $x=4$, execute the script

$$
\begin{aligned}
& F=O P(\text { lambda } x: x * * 3-12 * x * * 2+36 * x+8) \\
& x=F \cdot q n e w t o n(x 0=4.0)
\end{aligned}
$$

- After 9 iterations, this produces

$$
x=[2 .]
$$

Figure 1: Function $f(x)=x^{3}-12 x^{2}+36 x+8$

- To check the first and second derivatives, execute the script

$$
\begin{aligned}
J & =F \cdot j a c o b i a n(x) \\
H & =F \cdot \operatorname{hessian}(x) \\
E & =n p \cdot l i n a l g \cdot \operatorname{eig}(H)[0]
\end{aligned}
$$

- This produces

$$
\begin{aligned}
& J=[-0 .] \\
& E=[-12 .]
\end{aligned}
$$

- Thus, $x=2$ is a strict local maximum.

Example 5:
Maximum of
$g(x, y)=5-4 x^{2}-2 y^{2}-4 x y-2 y$

- To maximize

$$
g(x, y)=5-4 x^{2}-2 y^{2}-4 x y-2 y
$$

starting from $x=(0,0)$, execute the script

$$
\begin{aligned}
\text { def } & g(z): \\
& x, y=z \\
& \text { return } 5-4 * x * * 2-2, \\
G= & O P(g) \\
x= & G . q n e w t o n(x 0=[-1,1])
\end{aligned}
$$

$$
\text { return } 5-4 * x * * 2-2 * y * * 2-4 * x * y-2 * y
$$

- After 3 iterations, this produces

$$
x=\left[\begin{array}{ll}
0.5 & -1 .
\end{array}\right]
$$

- To check the Jacobian and the eigenvalues of the Hessian, execute the script

```
J = G.jacobian(x)
E = np.linalg.eig(G.hessian(x))[0]
```

- This produces

$$
\begin{aligned}
& J=[0.0 .] \\
& E=[-10.4721-1.5279]
\end{aligned}
$$

- Thus, $x=(0.5,-1.0)$ is a strict local maximum.

Figure 2: Function $g(x, y)=5-4 x^{2}-2 y^{2}-4 x y-2 y$

Example 6:
Maximize the Rosencrantz function

- To maximize the Rosencrantz or "banana" function

$$
f(x, y)=-100\left(y-x^{2}\right)^{2}-(1-x)^{2}
$$

starting from $x_{0}=(1,0)$, execute the script def $f(z):$

$$
\begin{aligned}
& x, y=z \\
& \text { return }-100 *(y-x * * 2) * * 2-(1-x) * * 2
\end{aligned}
$$

$$
x 0=[1,0]
$$

$$
\text { banana }=O P(f)
$$

$$
x=\text { banana.qnewton(} x 0 \text {) }
$$

- After 27 iterations, this produces

$$
x=\left[\begin{array}{ll}
1 . & 1 .
\end{array}\right]
$$

- To check the Jacobian and the eigenvalues of the Hessian, execute the script

```
J = banana.jacobian(x)
E = np.linalg.eig(banana.hessian(x))[0]
```

- This produces

$$
\left.\begin{array}{l}
J=\left[\begin{array}{ll}
-0 . & 0 .
\end{array}\right] \\
E=[-1001.6006
\end{array}-0.3994\right]\left[\begin{array}{l}
-0.3
\end{array}\right.
$$

- Thus, $x=(1,1)$ is a strict local maximum.
- To maximize the function using other method, one may override the default update method as follows:
banana.qnewton(x0, SearchMeth='steepest')
banana.qnewton(x0, SearchMeth='bfgs')
banana.qnewton(x0, SearchMeth='dfp')
- 'steepest' fails to find the optimum after 250 iterations, the default maximum allowable. The search paths are:

Figure 3: Maximization of Rosencrantz Function

Special Cases

- Two special classes of optimization problems arise often in econometrics and warrant additional discussion.
- Nonlinear least squares and maximum likelihood have special structures that give rise to efficient quasi-Newton methods that use different inverse Hessian approximations.
- Because these problems generally arise in statistical applications, we alter our notation to conform with the conventions for those applications.
- Optimization takes place with respect to a k-dimensional parameter vector θ and n will refer to the number of observations.
- The nonlinear least squares problem takes the form

$$
\min _{\theta} \frac{1}{2} f(\theta)^{\top} f(\theta)=\min _{\theta} \sum_{i=i}^{n} \frac{1}{2} f_{i}^{2}(\theta)
$$

where $f: \Re^{k} \rightarrow \Re^{n}$.

- This objective has gradient

$$
\sum_{i=1}^{n} f_{i}^{\prime}(\theta) f_{i}(\theta)=f^{\prime}(\theta)^{\top} f(\theta)
$$

and Hessian

$$
f^{\prime}(\theta)^{\top} f^{\prime}(\theta)+\sum_{i=1}^{n} f_{i}(\theta) \frac{\partial^{2} f(\theta)}{\partial \theta \partial \theta^{\top}}
$$

- Ignoring the second term in the Hessian yields a positive definite matrix with which to determine the search direction:

$$
d=-\left[f^{\prime}(\theta)^{\top} f^{\prime}(\theta)\right]^{-1} f^{\prime}(\theta)^{\top} f(\theta)
$$

Example 7:
Nonlinear least squares
estimation

Greene (2012, p.191) considers the following nonlinear consumption function

$$
C=\alpha+\beta * Y^{\gamma}+\epsilon
$$

which is estimated with quarterly data on real consumption and disposable income for the U.S. economy for 1950 to 2000.

Figure 4: Income and consumption in the U.S.

To get the data

import pandas as pd

data = pd.read_table('TableF5-2.txt',sep='\s+')
Y, C = data[['realgdp','realcons']].values.T
The objective function is the (negative) of the sum of squared-residuals def $\operatorname{ssr}(\theta)$:

$$
\alpha, \beta, \gamma=\theta
$$

$$
\text { residuals }=c-\alpha-\beta * Y * * \gamma
$$

return -(residuals**2).sum()

We find the nonlinear least squares estimator, starting from guess $(\alpha, \beta, \gamma)=(0,0,1)$

```
from compecon import OP
0nlls = OP(ssr).qnewton([0.0, 0.0, 1.0])
```

This returns $(\alpha, \beta, \gamma)=$

$$
\left[\begin{array}{ccc}
{[-91.1965} & 0.5691 & 1.0204]
\end{array}\right.
$$

This result is not the same found in Greene's textbook, but it can be reproduced with Stata:
import delimited TableF5-2.txt, delimiter(space, collapse) $n l(r e a l c o n s=\{a l p h a=0.0\}+\{$ beta=0.0\}*realgdp ^\{gamma=1.0\})

- Maximum likelihood problems are specified by a choice of a distribution function f for the data y that depends on a parameter vector θ.
- The log-likelihood function is the sum of the logs of the likelihoods of each of the data points:

$$
l(\theta ; y)=\sum_{i=1}^{n} \ln f\left(\theta ; y_{i}\right)
$$

- The score function is defined as the $n \times k$ matrix of derivatives of the log-likelihood function evaluated at each observation:

$$
s_{i}(\theta ; y)=\frac{\partial l\left(\theta ; y_{i}\right)}{\partial \theta}
$$

- A well-known result in statistical theory is that the expectation of the inner product of the score function is the negative of the expectation of the Hessian of the likelihood function.
- The sample average of the inner product of the score function thus provides a reasonable positive definite approximation of the Hessian that can be used to determine a search direction:

$$
d=-\left[s(\theta ; y)^{\top} s(\theta, y)\right]^{-1} s(\theta, y)^{\prime} 1_{n}
$$

where 1_{n} is an n-vector of ones.

- This approach is known as the modified method of scoring.

Example 8:
Maximum likelihood estimation

Greene (2012, p.590) considers the following binary choice model

$$
\mathbb{P}[\operatorname{GRADE}=1]=F\left(\beta_{0}+\beta_{1} \mathrm{GPA}+\beta_{2} \mathrm{TUCE}+\beta_{3} \mathrm{PSI}\right)
$$

where F is cumulative distribution function for either the normal distribution (probit) or the logistic distibution (logit).

To get the data, as well as the cdf for the normal and logistic distributions:
from scipy.stats import norm, logistic
data = pd.read_table('TableF14-1.txt',sep='\s+') data['intercept'] = 1
regressors = ['intercept', 'GPA','TUCE','PSI']

X = data[regressors]
y = data['GRADE']

The log-likelihood function for a binary model is given by

$$
\ln L=\sum_{i=1}^{n}\left\{y_{i} \ln F\left(x_{i}^{\prime} \beta\right)+\left(1-y_{i}\right) \ln \left[1-F\left(x_{i}^{\prime} \beta\right)\right]\right\}
$$

which we code as

```
def binary_model(\beta,distribution):
    F = distribution.cdf(X 目)
    return (y*np.log(F) + (1-y)*np.log(1-F)).sum()
    def logL_logit(\beta):
    return binary_model(\beta,logistic)
    def logL_probit(\beta):
        return binary_model(\beta,norm)
```

We then estimate the model

```
B0 = np.zeros(4) # initial guess
\beta_logit = OP(logL_logit).qnewton(\beta0, SearchMeth='bfgs')
\beta
pd.DataFrame({'logit':\beta_logit,'probit':\beta_probit},
    index=regressors)
```

which returns

	logit	probit
intercept	-13.021	-7.452
GPA	2.826	1.626
TUCE	0.095	0.052
PSI	2.379	1.426

These results can be reproduced with Stata:
infix obs 1-3 gpa 10-14 tuce 19-23 psi 28 grade $37 . .$. using TableF14-1.txt in 2/33
logit grade gpa tuce psi probit grade gpa tuce psi

References

(0) Greene, William H. (2012). Econometric Analysis. 7th ed. Prentice Hall. ISBN: 978-0-13-139538-1.
(Miranda, Mario J. and Paul L. Fackler (2002). Applied Computational Economics and Finance. MIT Press. ISBN: 0-262-13420-9.

