R ESCUELAG:
UC ECONOMIA

UNIVERSIDAD ot COSTARICA

UNIVERSIDAD pe COSTARICA

Lecture 4

Finite-Dimensional Unconstrained Optimization

Randall Romero Aguilar, PhD
This draft: September 19, 2018

Universidad de Costa Rica
SP6534 - Economia Computacional

Table of contents

1. Basic Theory
2. Numerical Algorithms
3. Numerical Examples

4. Special Cases

Basic Theory

Applications

Unconstrained optimization problems are ubiquitous in
economics:

- Government maximizes social welfare
- Competitive equilibrium maximizes total surplus

- Ordinary least squares estimator minimizes sum of
squares

- Maximum likelihood estimator maximizes likelihood
function

- In the finite-dimensional unconstrained optimization
problem, one is given a function f : ®" — R and asked to
find an x* such that f(z*) > f(z) for all z.

- We call f the objective function and z*, if it exists, the
global maximum of f.

- We focus on maximization - to solve a minimization
problem, simply maximize the negative of the objective.

We say that z* € R™ is a ...

- strict global maximum of f if f(z*) > f(=) for all z # z*.

- local maximum of f if f(z*) > f(x) for all x in some
neighborhood of z*.

- strict local maximum of f if f(z*) > f(z) forall z # z* in
some neighborhood of z*.

Optimality Conditions

- Let f: R™ — R be twice continuously differentiable.

- First Order Necessary Condition: If z* is a local maximum
of f,then f'(z*) = 0.

- Second Order Necessary Condition: If z* is a local
maximum of f, then f”(z*) is negative semidefinite.

- We say x is a critical point of f if it satisfies the first-order
necessary condition.

- Sufficient Condition: If f/(z*) = 0 and f”(z*) is negative
definite, then z* is a strict local maximum of f.

- Local-Global Theorem: If f is concave, and z* is a local
maximum of f, then z* is a global maximum of f.

Example 1:
Maximizing
f(z) = 2° — 122% + 362 + 8

- Consider maximizing
f(z) = 23 — 1222 4 36z + 8.
- The first-order necessary condition

fl(x) =322 — 242 + 36 = 3(z — 6)(z —2) =0

- ... Is satisfied at the critical points z =2 and = = 6.

- Since
f"(z) =6z — 24
it follows that

f"(2)=-12<0 and [f"(6)=12>0

- Thus,
- x = 2 satisfies the sufficient condition for a strict local
maximum, but

- x = 6 fails the second-order necessary condition for a
local maximum.

Example 2:
Maximizing

f(x) =3—xf — 23— 1129 + 21 + T2

- Consider maximizing
f(z) =3 — 22 — 22 — z129 + 221 + 2.
- The first-order necessary condition

—2x1 — 290+ 2
—x1 — 229+ 1

fi(x) = [

.. is satisfied at the critical point z; = 1 and x5 = 0.

- The Hessian at the critical point
-2 -1
/i _
=[]

has characteristic equation

e S|
det[.) /\]:)\2+4)\+3:(A+3)(A+1):0.

- The Hessian has negative eigenvalues, —3 and —1, and
thus is negative definite.

- Thus, z = (1, 0) satisfies the sufficient condition for a
strict local maximum.

Envelope Theorem

- The Envelope Theorem tells us how the maximum value of
a function varies with respect to a parameter.

- Let f: Rt — R be a real-valued continuously
differentiable function. If

V(a) = max f(z, a)

is well-defined and z(«) solves the maximization problem,
then

10

Example 3:

Envelope theorem

- If f(z,a) = az — 0.522, then
V() = max f(z, o) = 0.502

- Thus
V'(a) = a.

- For each a, the maximum is z(a) = «, so that, by the
Envelope Theorem,

as expected.

"

Numerical Algorithms

Newton-Raphson Method

- The Newton-Raphson method maximizes an objective f
using successive quadratic approximations.

- Given the k' iterate x, the subsequent iterate 1 is
computed by maximizing the quadratic approximation to
f about x;:

F@) = f (zp)+f (2x) (@ = 2p)+5 (@ — z) f7 (2x) (z = z3).
- Solving the first-order condition
[(r) + 7 () (@ — 21) =0,

yields the iteration rule
=il

f (k) -

Th1 =z — [(@)]

12

- The Newton-Raphson method is identical to using
Newton’s method to compute the root of the gradient of
the objective.

- In theory, it will converge if the initial value is “close” to a
critical point of f at which the Hessian is non-singular.

- In practice, it will diverge if the initial value is “far” from a
critical point or the Hessian becomes ill-conditioned.

- Moreover, it may converge to a critical point that is not a
local maximum, so the second-order necessary condition
should always be checked.

- Newton-Raphson can be robust to the starting value if f is
globally concave, but sensitive otherwise.

13

- Newton-Raphson has two drawbacks.

- First, it requires computation of both the first and second
derivatives.

- Second, it may not be possible to increase the objective in
the direction of the Newton step ... this is guaranteed only
if f"(xr) is negative definite.

- For this reason, the Newton-Raphson is rarely used in
practice, and then only if the objective is globally concave.

14

Quasi-Newton Methods

- In analogy with the Newton-Raphson method,
quasi-Newton methods update iterates in the direction of

the vector
dp = —Arf' (z)
where A, Is an approximation to the inverse Hessian of f
at the k" iterate zy,.
- The vector d;, is called the Newton or quasi-Newton step.

15

- Just as with rootfinding problems, it is not always best to
take a full Newton step at each iteration.

- Efficient quasi-Newton methods shorten or lengthen the
Newton step to increase gains in the objective.

- This is accomplished by performing a line search in which
the Newton step is re-scaled by a factor s > 0 that
maximizes or nearly maximizes f (zy + sdy).

- Given the computed scaling factor s;, one updates the
iterate as follows:

Tkl = Tk + Spdk.

- In practice, a thorough line search is not necessary.

- Typically, it suffices to assure that the objective increases
with each iteration.

- A number of different line search methods are used in
practice.

- Line search methods are beyond the scope of the course,

but are discussed in most books on applied optimization.

- The CompEcon Toolbox offers four line search methods.

- Quasi-Newton algorithms differ in how the inverse
Hessian approximation Ay is constructed and updated.

- Efficient algorithms use negative definite inverse Hessian
approximations, guaranteeing the objective can be
increased in the direction of the Newton step.

- Efficient quasi-Newton algorithms also employ updating
rules that do not require computing second derivatives.

- The CompEcon Toolbox offers three update methods.

- The simplest quasi-Newton method sets Ay, = —I, where I
is the identity matrix, leading to a Newton step that is
identical to the gradient of the objective:

di, = f' (x) -

- This is called the method of steepest ascent because the
gradient, to a first order, promises the greatest increase in
I

- The steepest ascent method is simple, but numerically
less efficient in practice than quasi-Newton methods that
employ curvature information.

19

- The most widely-used quasi-Newton methods employ
inverse Hessian update rules that satisfy two conditions.

- First, the inverse Hessian update A1 IS required to
satisfy the quasi-Newton condition:

Tyl — T = Agq1 (f/(xkﬂ) - f/(l’k)) 0

- Second, the inverse Hessian update is required to be
symmetric negative definite to assure the objective can be
increased in the direction of the Newton step.

- Two updating methods that satisfy the quasi-Newton and
negative definiteness conditions are widely used in
practice.

20

- The Davidson-Fletcher-Powell (DFP) method uses the
updating scheme
’UM};C Akuku;CA;

A1 = A + -
+ Uy, ul Agug

where
Vg = Th41 — Tk
and

ug = f(@r41) — f'(z1).

21

- The Broyden-Fletcher-Goldfarb-Shano (BFGS) method
uses the update scheme

/
U W
(uaﬂﬁ:+-vku%-— uf vkv;>

Apy1 = Ap + /
KUk

V) Uk
where
WE = Vg — Akuk

- BFGS typically outperforms DFP, although there are
problems for which DFP outperforms BFGS.

22

- Quasi-Newton methods are susceptible to certain
problems.

- In both update formulae there is a division by v} uy.

- If this value becomes very small in absolute value,
numerical instabilities will result.

- Thus, it is best to skip updating A, or replace it with a
scaled negative identity matrix if the value becomes too
small.

23

Numerical Examples

The OP class

- The CompEcon package provides class OP (optimization
problem) for computing the maximum of function
R — R

- A optimization problem is created as follows:

from compecon import OP

def f(x): #objective function
return ... #function value

problem = OP(f)

X0 = ... #initial guess

X = problem.gnewton(x0) #local maximum of f
- Users may use chose different inverse Hessian update

and line search methods. o

Example 4:

Local maximum of
3 — 122° + 36z + 8

- To maximize
f(z) = 2% — 1222 + 362 + 8
starting from x = 4, execute the script
F = OP(lambda x: x**3 - 12%x**2 + 36%*X + 8)
x = F.gnewton(x0=4.0)
- After 9 iterations, this produces
x = [2.]

Figure 1: Function f(z) = % — 1222 + 36z + 8

25

- To check the first and second derivatives, execute the

script
J = F.jacobian(x)
H = F.hessian(x)
E = np.linalg.eig(H)[0]
- This produces
J= [-0.]
E= [-12.]

- Thus, z = 2 is a strict local maximum.

26

Example 5:

Maximum of
g(w,y) =5 —4a® — 2y° — 4wy — 2y

- To maximize
g9(z,y) =5 — 40 — 2y* — dzy — 2y

starting from x = (0, 0), execute the script
def g(z):
X,y =12
return 5 - 4#X*%2 - 2*%y*x*2 - LxXxy - 2%y

G
X

OP(g)
G.gnewton(x0=[-1, 1])

- After 3 iterations, this produces
x = [0.5 -1.]

27

- To check the Jacobian and the eigenvalues of the Hessian,
execute the script
J = G.jacobian(x)
E = np.linalg.eig(G.hessian(x))[0]
- This produces
J = [0.0.]
E = [-10.4721 -1.5279]
- Thus, z = (0.5, —1.0) is a strict local maximum.

Figure 2: Function g(z,y) = 5 — 422 — 2y% — 4oy — 2y

28

Example 6:

Maximize the Rosencrantz
function

- To maximize the Rosencrantz or “banana” function

f(z,y) = —100(y — 2°)* — (1 — x)?

starting from zg = (1, 0), execute the script
def f(z):
X, y =2
return -100 * (y - x**2)*%x2 - (1 - X)*%2

x0 = [1, 0]
banana = OP(f)
X = banana.gnewton(x0)

- After 27 iterations, this produces
x = [1. 1.]

29

- To check the Jacobian and the eigenvalues of the Hessian,
execute the script
J
E
- This produces
J= [-0. 0.]
E = [-1001.6006 -0.3994]

- Thus, z = (1,1) is a strict local maximum.

banana.jacobian(x)
np.linalg.eig(banana.hessian(x))[0]

30

- To maximize the function using other method, one may

override the default update method as follows:
banana.gnewton(x0, SearchMeth='steepest')
banana.gnewton(x0, SearchMeth='bfgs"')
banana.gnewton(x0, SearchMeth='dfp")

- 'steepest’ fails to find the optimum after 250 iterations,

the default maximum allowable. The search paths are:

STEEPEST search - BFGS search ‘ DFP search

X X X

Figure 3: Maximization of Rosencrantz Function

31

Special Cases

- Two special classes of optimization problems arise often
in econometrics and warrant additional discussion.

- Nonlinear least squares and maximum likelihood have
special structures that give rise to efficient quasi-Newton
methods that use different inverse Hessian
approximations.

- Because these problems generally arise in statistical
applications, we alter our notation to conform with the
conventions for those applications.

- Optimization takes place with respect to a k-dimensional
parameter vector 6 and n will refer to the number of
observations.

32

- The nonlinear least squares problem takes the form
min3f(6)"f(6) = mind_3f7(0)

where f: ®F — R
- This objective has gradient

Y FO)fi8) = £(6)T £(6)
i=1

and Hessian

i 920

7OTrO)+ S o 2L

- lgnoring the second term in the Hessian yields a positive
definite matrix with which to determine the search
direction:

d=-[r@T o] re e

33

Example 7:

Nonlinear least squares
estimation

Greene (2012, p191) considers the following nonlinear
consumption function

C=a+p*xY" +e¢

which is estimated with quarterly data on real consumption

and disposable income for the U.S. economy for 1950 to 2000.

8000
6000
4000

2000
1949 1959 1969 1979 1989 1999

Figure 4: Income and consumption in the U.S.

34

To get the data

import pandas as pd
data = pd.read_table('TableF5-2.txt',sep="\s+")
Y, C = data[['realgdp', 'realcons']].values.T

The objective function is the (negative) of the sum of
squared-residuals

def ssr(E):

o B M =8

residuals = C - []— [PY**!
return -(residuals**2).sum()

35

We find the nonlinear least squares estimator, starting from

from compecon import OP
Enlls = OP(ssr).gnewton([0.0, 0.0, 1.0])

This returns (a, 8,7) =
[-91.1965 0.5691 1.0204]

This result is not the same found in Greene's textbook, but it
can be reproduced with Stata:

import delimited TableF5-2.txt, delimiter(space, collapse)
nl (realcons = {alpha=0.0} + {beta=0.0}*realgdp “{gamma=1.0})

- Maximum likelihood problems are specified by a choice of
a distribution function f for the data y that depends on a
parameter vector 6.

- The log-likelihood function is the sum of the logs of the
likelihoods of each of the data points:

(6;9) = > In f(6;y:).
=l

- The score function is defined as the n x k matrix of
derivatives of the log-likelihood function evaluated at
each observation:

81 9; i

37

- A well-known result in statistical theory is that the
expectation of the inner product of the score function is
the negative of the expectation of the Hessian of the
likelihood function.
- The sample average of the inner product of the score
function thus provides a reasonable positive definite
approximation of the Hessian that can be used to
determine a search direction:

i
d=—[s0:) 5(0.9)] 5(0.9)'1n,

where 1,, is an n-vector of ones.

- This approach is known as the modified method of
scoring.

38

Example 8:

Maximum likelihood estimation

Greene (2012, p.590) considers the following binary choice
model

P[GRADE = 1] = F(8y + 1GPA + B2 TUCE + B3PSI)

where F' is cumulative distribution function for either the
normal distribution (probit) or the logistic distibution (logit).

39

To get the data, as well as the cdf for the normal and logistic
distributions:

from scipy.stats import norm, logistic
data = pd.read_table('TableF14-1.txt',sep="\s+")

data['intercept'] = 1
regressors = ['intercept', 'GPA','TUCE','PSI']

datal[regressors]
datal['GRADE']

< X
1l

40

The log-likelihood function for a binary model is given by
InL=> {ylnF(xiB)+ (1 - y) [l - Fz;)]}
i=1

which we code as

def binary_model([Ldistribution):
F = distribution.cdf(X @ [D
return (y*np.log(F) + (1-y)*np.log(1-F)).sum()

def logl_logit(p):
return binary_model([Llogistic)

def 1ogL_probit(@):
return binary_model([Lnorm)

4

We then estimate the model
[p = np.zeros(4) # initial guess

@_logit = OP(logL_logit).qnewton([@, SearchMeth="bfgs")

@_probit = OP(logL_probit).qnewton([Llogit/z, SearchMeth="bfgs")

pd.DataFrame({'logit':[Llogit,'probit':[Lprobit},
index=regressors)

which returns

logit
intercept -13.021
GPA 2.826
TUCE 0.095
PST 2.379

probit
-7.452
1.626
0.052
1.426

42

These results can be reproduced with Stata:

infix obs 1-3 gpa 10-14 tuce 19-23 psi 28 grade 37...
using TableF1l4-1.txt in 2/33

logit grade gpa tuce psi
probit grade gpa tuce psi

43

References

@ Greene, William H. (2012). Econometric Analysis. 7th ed.
Prentice Hall. 1ISBN: 978-0-13-139538-1.

@ Miranda, Mario J. and Paul L. Fackler (2002). Applied
Computational Economics and Finance. MIT Press. ISBN:
0-262-13420-9.

44

	Basic Theory
	Numerical Algorithms
	Numerical Examples
	Special Cases

