
Lecture 3
Nonlinear Equations

Randall Romero Aguilar, PhD
II Semestre 2018
Last updated: August 26, 2018

Universidad de Costa Rica
SP6534 - Economía Computacional

Table of contents

1. Introduction

2. Function Iteration

3. Newton’s Method

4. Quasi-Newton Methods

5. Numerical Examples using CompEcon

6. Practical Issues

7. Complementarity Problems

Introduction

• The nonlinear equation takes one of two forms.
• Rootfinding Problem: Given a function f : ℜn 7→ ℜn,
compute an n-vector x∗, called a root of f , such that

f(x∗) = 0.

• Fixed-Point Problem: Given a function g : ℜn 7→ ℜn,
compute an n-vector x∗, called a fixed-point of g, such
that

g(x∗) = x∗.

• The two forms are equivalent:
• A root of f is a fixed-point of g(x) = x− f(x).
• A fixed-point of g is root of f(x) = x− g(x).

1

• Nonlinear equations arise naturally in economics:
• Multicommodity market equilibrium models
• Multiperson static game models
• Unconstrained optimization models

• Nonlinear equations also arise indirectly when
numerically solving economic models involving functional
equations:

• Dynamic optimization models
• Rational expectations models
• Arbitrage pricing models

2

Function Iteration

• Function iteration is an algorithm for computing a
fixed-point of a function g : ℜn 7→ ℜn.

• Guess an initial value x0 and successively form the iterates

xk+1 = g(xk)

until the iterates converge.

3

x0 x1 x2 x *

x1

x2

x3

x *

45°

g

Function Iteration

Figure 1: Computing Fixed-Point of g Using Function Iteration

4

• When is function iteration guaranteed to converge?
• By the Contraction Mapping Theorem, if for some δ < 1,

∥g(x1)− g(x2)∥ ≤ δ∥x1 − x2∥

for all x1 and x2, then g possesses an unique fixed-point
x∗ and function iteration converges to it from any initial
value x0.

• Moreover,

∥xk − x∗∥ ≤ δ

1− δ
∥xk − xk−1∥.

• More generally, function iteration will also converge if the
initial value x0 is “close” to a fixed-point x∗ of g at which

∥g′(x∗)∥ < 1.

• There is no general practical way to determine what
“close” is.

5

Example 1:

Fixed-point of g(x) =
√
x + 0.2

• To compute the fixed-point of

g(x) =
√
x+ 0.2

using function iteration, one employs the iteration rule

xk+1 = g(xk) =
√
xk + 0.2.

• In Python, execute the script

x=0.4
for it in range(50):

xold, x = x, np.sqrt(x+0.2)
if abs(x-xold)<1.e-10: break

• After 28 iterations, x converges to 1.1708.

6

Newton’s Method

• Newton’s method is an algorithm for computing a root of
a function f : ℜn 7→ ℜn.

• Guess an initial value x0 and successively form the iterates

xk+1 = xk − f ′(xk)
−1f(xk)

until the iterates converge.
• If n = 1, the iteration rule takes the simpler form

xk+1 = xk −
f(xk)

f ′(xk)
.

7

• Newton’s method employs a strategy of successive
linearization.

• The strategy calls for the nonlinear function f to be
approximated by a sequence of linear functions whose
roots are easily computed and, ideally, converge to the
root of f .

• In particular, the k + 1th iterate

xk+1 = xk − f ′(xk)
−1f(xk)

is the root of the Taylor linear approximation of f around
the preceding iterate xk :

f(x) ≈ f(xk) + f ′(xk)(x− xk).

8

x0x1x2x3x *

f

Newton's Method

Figure 2: Computing Root of f Using Newton’s Method
9

• When is Newton’s method guaranteed to converge?
• In theory, Newton’s method will converge if the initial
value x0 is “close” to a root x∗ of f at which f ′(x∗) is
non-singular.

• Theory, however, provides no practical definition of “close”.
• Moreover, in practice, Newton’s method will fail to
converge to x∗ if f ′(x∗) is ill-conditioned, i.e., nearly
singular.

10

Example 2:

Root of function f (x) = x4 − 2

• To compute the root of f(x) = x4 − 2 using Newton’s
method, one employs the iteration rule:

xk+1 = xk −
f(xk)

f ′(xk)
= xk −

x4k − 2

4x3k

• In Python, execute the script

x = 2.3
for it in range(50):

print(it, x)
step = -(x**4-2)/(4*x**3)
x += step
if abs(step)<1.e-10: break

• After 8 iterations, x converges to 1.1892.

11

Quasi-Newton Methods

• Quasi-Newton methods replace the Jacobian in Newton’s
method with an estimate that is easier to compute.

• Specifically, quasi-Newton methods use an iteration rule

xk+1 = xk −A−1
k f(xk)

where Ak is an estimate of the Jacobian f ′(xk).

12

Secant Method

• The Quasi-Newton method for univariate root-finding
problems is called the secant method.

• The secant method replaces the derivative in Newton’s
method with the estimate

f ′(xk) ≈
f(xk)− f(xk−1)

xk − xk−1
,

which leads to the iteration rule

xk+1 = xk −
xk − xk−1

f(xk)− f(xk−1)
f(xk).

• The secant method is so called because it approximates
the function f using “secant” lines drawn through
successive pairs of points on its graph.

13

x0x1x2x3x *

f

Secant Method

Figure 3: Computing Root of f Using Secant Method
14

Example 3:

Root of function f (x) = x4 − 2

• To compute the root of f(x) = x4 − 2 using the secant
method, execute the script

f = lambda z: z**4-2
x, xlag = 2.3, 2.4

for it in range(50):
d = (f(x)-f(xlag)) / (x-xlag)
x, xlag = x-f(x)/d, x
if abs(x-xlag)<1.e-10: break

• After 10 iterations, x converges to 1.1892.

15

Broyden’s Method

• Broyden’s method is the most popular multivariate
generalization of the univariate secant method.

• Broyden’s method replaces the Jacobian in Newton’s
method with an estimate Ak that is updated by making
the smallest possible change that is consistent with the
secant condition:

f(xk+1)− f(xk) = Ak+1(xk+1 − xk).

• This yields the iteration rule

Ak+1 = Ak + (f(xk+1)− f(xk)−Akdk)
d′k
d′kdk

where dk = xk+1 − xk .

16

• When is Broyden’s method guaranteed to converge?
• In theory, Broyden’s method will converge if the initial
value x0 is “close” to a root x∗ of f at which the Jacobian
f ′(x∗) is non-singular and if the initial Jacobian estimate
A0 is “close” to f ′(x∗).

• Theory, however, provides no practical definition of “close”.
• Moreover, in practice, Broyden’s method will fail to
converge to x∗ if the Jacobian estimates Ak become
ill-conditioned, i.e., nearly singular.

• Also, even if the xk converge to x∗, the Jacobian estimates
Ak at the final iterate often does not provide an
acceptable approximation to the Jacobian f ′(x∗) at the
root.

17

Numerical Examples using
CompEcon

The NLP class

• The CompEcon package provides class NLP (non-linear
problem) for computing the root of function f : ℜn 7→ ℜn.

• A nonlinear equations problem is created as follows:
from compecon import NLP

def f(x): #objective function
fval = ... #function value
fjac = ... #Jacobian value
return fval, fjac

problem = NLP(f)

18

Solving by Newton’s method

• To solve by Newton’s method, simply call the .newton
method on the NLP object, providing an initial value x0

x = problem.newton(x0)
• On output, x is the root of the problem.
• To check the value of f , get the attribute problem.fx
• Notice that the steps can be combined as in:

x = NLP(f).newton(x0)

19

Solving by Broyden’s method

• To solve by Broyden’s method, simply call the .broyden
method on the NLP object, providing an initial value x0

x = problem.broyden(x0)
• On output, x is the root of the problem.
• To check the value of f , get the attribute problem.fx
• As usual, the steps can be combined as in:

x = NLP(f).broyden(x0)
• To use Broyden’s method it is not necessary to return the
Jacobian of the objective function.

20

Example 4:

Roots of a function in R2

• Let us compute the root of

f(x, y) =

[
y exp(x)− 2y

xy − y3

]

• To use broyden with initial guess (1.0, 0.5)
def f(z):

x, y = z
fval =[y*np.exp(x) - 2*y, x*y - y**3]
return np.array(fval)

x0 = np.array([1.0, 0.5])
x = NLP(f).broyden(x0)

• On output, typing print(x) results in
[0.69314718 0.8325546]

21

• To use newton, we need to compute the jacobian
def f(z):

x, y = z
fval = [y*np.exp(x) - 2*y, x*y - y**3]
fjac = [[y*np.exp(x), np.exp(x)-2],

[y, x-3*y**2]]
return np.array(fval), np.array(fjac)

x0 = np.array([1.0, 0.5])
x = NLP(f).newton(x0)

• On output, typing print(x) results in
[0.69314718 0.83255461]

22

• By default, both broyden, and newton work quietly.
• To print the iterations, just set the option print=True.
For example,

x = NLP(f).newton(x0, print=True)
prints the following output

Solving nonlinear equations by Newton's method
it bstep change

0 5 3.69e-01
1 0 6.76e-02
2 0 4.69e-03
3 0 2.89e-05
4 0 1.11e-09

23

0.3 0.7 1.1
x

0.4

0.8

1.2
y

f1(x, y) = 0

f2(x, y) = 0

Newton's method

0.3 0.7 1.1
x

0.4

0.8

1.2

y

f1(x, y) = 0

f2(x, y) = 0

Broyden's method

Figure 4: Convergence Paths for Newton and Broyden’s Methods

24

Example 5:

A Cournot Equilibrium

• Consider a market with two firms producing the same
good.

• Firm i’s total cost of production is a function

Ci(qi) =
βi
2
q2i

of the quantity qi it produces.
• The market clearing price is a function

P (q1 + q2) = (q1 + q2)
−α

of the total quantity produced by both firms.

25

• Firm i chooses production qi so as to maximize its profit

πi(q1, q2) = P (q1 + q2)qi − Ci(qi),

taking the other firm’s output as given.
• Thus, in equilibrium,

∂πi
∂qi

= P + P ′qi − C ′
i = 0

for i = 1, 2.

26

• Suppose α = 0.6, β1 = 0.6, and β2 = 0.8.
• To solve the problem using Broyden’s method:

alpha, beta = 0.6, np.array([0.6, 0.8])

def cournot(q):
qsum = q.sum()
P = qsum**(-alpha)
P1 = -alpha*qsum**(-alpha-1)
return P + (P1-beta)*q

NLP(cournot).broyden([0.2,0.2])
• Here, cournot computes the marginal profits of both
firms.

• After 9 iterations, q converges to q∗ = (0.8562, 0.700).

27

To compute the equilibrium using Newton’s method, define
the function cournot2 so that it also returns the Jacobian J:

alpha, beta = 0.6, np.array([0.6, 0.8])

def cournot2(q):
qsum = q.sum()
P = qsum**(-alpha)
P1 = -alpha*P/qsum
P2 = (-alpha-1)*P1/qsum
f = P + (P1-beta)*q
J = P1 + P2*np.repeat(q,[2]).reshape(2,2) + np.diag(P1-beta)
return f, J

The market equilibrium can then be computed by calling the
newton method on NLP:

NLP(cournot).newton([0.2,0.2])

After 5 iterations, q converges to q∗1 = 0.856 and q∗2 = 0.700.

28

Of course, if you do not have access to the CompEcon Toolbox,
you can always directly compute the market equilibrium using
Newton’s method:

alpha, beta = 0.6, np.array([0.6, 0.8])
q = np.array([0.2,0.2])

for it in range(40):
f, J = cournot2(q)
step = -np.linalg.solve(J,f)
q += step
if np.linalg.norm(step)<1e-10: break

On output, typing print(q) results in

[0.8562 0.7]

29

0.2 0.4 0.6 0.8 1.0 1.2
q1

0.2

0.4

0.6

0.8

1.0

1.2

q 2
1 = 0

2 = 0

Newton's method

0.2 0.4 0.6 0.8 1.0 1.2
q1

0.2

0.4

0.6

0.8

1.0

1.2

q 2

1 = 0

2 = 0

Broyden's method

Figure 5: Convergence Paths for Newton and Broyden’s Methods

30

Practical Issues

Failure to Converge

In practice, nonlinear equation algorithms can fail for various
reasons:

• Human error
• Bad initial value
• Ill-conditioning

31

Human error

• Math error: analyst incorrectly derives function or
Jacobian.

• Coding error: analyst incorrectly codes function or
Jacobian.

• Errors more likely with Newton’s method because
Jacobian must be correctly derived and coded.

• Errors less likely with function iteration and Broyden’s
method because they are derivative-free.

32

Bad initial value

• Nonlinear equation algorithms require initial values.
• If initial value is far from desired root, algorithm may
diverge or converge to the “wrong” root.

• Theory provides no guidance on how to specify initial
value.

• Analyst must supply good guess from knowledge of model.
• If iterates diverge, try another initial value.
• Well behaved functions more robust to initial value.
• Poorly behaved functions more sensitive to initial value.

33

Ill-conditioning

• Computing iteration step in Newton’s and Broyden’s
methods requires solution to a linear equation involving
the Jacobian or its estimate.

• If the Jacobian or estimate is ill-conditioned near the
solution, the iteration step cannot be accurately
computed.

• Very little can be done about this.
• It arises more often than we like.

34

Execution Speed

Two factors determine the speed with which a properly coded
and initiated algorithm will converge to a solution:

• Asymptotic rate of convergence
• Computational effort per iteration

35

Asymptotic rate of convergence

• The asymptotic rate of convergence measures
improvement afforded per iteration near the solution.

• A sequence xk converges to x∗ at an asymptotic rate of
order p if there is constant C > 0 such that for k
sufficiently large,

∥xk+1 − x∗∥ ≤ C∥xk − x∗∥p.

• Function iteration converges at a “linear” rate with p = 1

and C < 1 – relatively slow.
• Broyden’s method converges at a “superlinear” rate with
p ≈ 1.62 – relatively fast.

• Newton’s method converges at a “quadratic” rate with
p = 2 – extremely fast.

36

Convergence rates

0 2 4 6 8 10 12
Iteration

14

12

10

8

6

4

2

0

2

Lo
g1

0
Er

ro
r

Convergence rates

Newton's Method
Broyden's Method
Function Iteration

Figure 6: Rate of Convergence When Computing Fixed-Point of x− exp(x) + 1 Using
Various Methods, x0 = 2

37

Computational effort per iteration

• However, algorithms differ in computations per iteration.
• Function iteration requires a function evaluation.
• Broyden’s method additionally requires a linear solve.
• Newton’s method additionally requires a Jacobian
evaluation.

• Thus, a faster rate of convergence typically can be
achieved only by investing greater computational effort
per iteration.

• The optimal tradeoff between rate of convergence and
computational effort per iteration varies across
applications.

38

Choosing a Solution Method

• Concerns about execution speed, however, are
exaggerated.

• The time that must be invested by the analyst to write and
debug code typically is far more important.

• Derivative-free methods such as function iteration and
Broyden’s method can be implemented faster in real time
and more reliably than Newton’s method.

• Newton’s method should be used only if
• dimension is low or derivatives are simple,
• other methods have failed to converge, or
• producing general purpose, re-usable code.

39

Complementarity Problems

Complementarity Problems

Many phenomena in economics and finance are naturally
modelled by requiring pairs of inequalities to be satisfied in
complementary fashion, that is, such that at least one of the
two inequalities holds with strict equality. These include

• Partial equilibrium models in which prices and quantities
are bounded (quotas, capacity bounds, price floors, price
ceilings, nonnegativity).

• Static optimization models in which a function must be
maximized subject to bound constraints.

40

General setup

The general complementarity problem takes the following
form: Given a function f from ℜn to ℜn, a ∈ ℜn and b ∈ ℜn,
find x ∈ ℜn such that for every i = 1, . . . , n,

ai ≤xi ≤ bi

xi > ai ⇒ fi(x) ≥ 0

xi < bi ⇒ fi(x) ≤ 0.

For brevity, we denote the complementarity problem

f(x) ⊥ [a, b].

41

Rootfinding vs. complementarity problems

• The rootfinding problem is a special case of the
complementarity problem in which ai = −∞ and bi = ∞
for all i.

• The complementarity problem, however, is not to find a
root that lies within specified bounds.

• fi(x) may be positive at a solution, though only if xi
equals its upper bound.

• fi(x) may be negative at a solution, though only if xi
equals its upper bound.

42

Arbitrage conditions as complementarity problems

Complementarity problems in economics and finance typically
admit an arbitrage interpretation:

• There are n economic activities.
• The level of activity i is denoted xi.
• The level of activity i is bounded below by ai and above by
bi.

• The marginal profit of activity i is fi(x).
• Profits can be raised by decreasing xi if xi > ai and
fi(x) < 0.

• Profits can be raised by increasing xi if xi < bi and
fi(x) > 0.

• Equilibrium obtains if and only if all profit opportunities
have been eliminated, that is, if and only if x solves
f(x) ⊥ [a, b]. 43

The Karush-Kuhn-Tucker theorem asserts that x maximizes a
function f : ℜn 7→ ℜ subject to the bound constraint a ≤ x ≤ b

only if it solves the complementarity problem f ′(x) ⊥ [a, b],
that is, only if, for all i,

ai ≤ xi ≤ bi

xi > ai ⇒ f ′
i(x) ≥ 0

xi < bi ⇒ f ′
i(x) ≤ 0.

44

Example 6:

Price Ceiling

• Excess demand for a good, quantity demanded less
quantity supplied, is a function E(p) of the good’s market
price.

• If the commodity market is competitive, the equilibrium
price is characterized by the rootfinding problem E(p) = 0.

• However, if the government imposes a price ceiling p̄, the
equilibrium price is characterized by the complementarity
problem E(p) ⊥ [−∞, p̄]:

−∞ ≤ p ≤ p̄

E(p) ≥ 0

p < p̄ ⇒ E(p) ≤ 0.

• Excess demand for the good, E(p) > 0, may exist in
equilibrium if the price ceiling is binding.

45

Example 7:

Minimum Wage

• Excess demand for labor, labor demanded less labor
supplied, is a function E(w) of the wage rate.

• If the labor market is competitive, the equilibrium wage is
characterized by the rootfinding problem E(w) = 0.

• However, if the government imposes a minimum wage w̄,
the equilibrium wage is characterized by the
complementarity problem E(w) ⊥ [w̄,∞]

w̄ ≤ w ≤ ∞
w > w̄ ⇒ E(w) ≥ 0

E(w) ≤ 0.

• Excess supply of labor, E(w) < 0, may exist in equilibrium
if the minimum wage is binding.

46

Example 8:

Spatial Price Equilibrium

• A commodity is produced and consumed in n regions.
• The quantity xij produced in region i and consumed in
region j cannot be negative or exceed a shipping capacity
bij .

• The cost cij of transporting one unit of the commodity
from producers in region i to consumers in region j is
constant.

• In region i, an inverse supply function gives the price psi
producers must be paid to produce quantity qsi =

∑
j xij .

• In region i, an inverse demand function gives the price pdi
consumers are willing to pay to purchase quantity
qdi =

∑
j xji.

47

• The profit from producing one unit of the commodity in
region i and selling it to consumers in region j is

πij(x) = pdj (x)− psi (x)− cij

• Equilibrium obtains only if all profit opportunities have
been eliminated, that is, only if the commodity flows x
solve the complementary problem π(x) ⊥ [0, b]:

0 ≤ xij ≤ bij

xij > 0 ⇒ πij(x) ≥ 0

xij < bij ⇒ πij(x) ≤ 0.

48

Existence and Uniqueness of Solution

• The complementarity problem f(x) ⊥ [a, b] is guaranteed
to possess an unique solution if f is strictly negative
monotone, that is, if (x− y)′(f(x)− f(y)) < 0 whenever
x, y ∈ [a, b] and x ̸= y.

• This is a multidimensional generalization of the
one-dimensional condition that f be strictly decreasing.

• The condition is satisfied by most economic models.
• The condition is satisfied by the Karush-Kuhn-Tucker
conditions of a bound-constrained maximization problem
with strictly concave objective function.

49

a b

0

f(a) > f(b) > 0

a b

0

f(a) > 0 > f(b)

a b

0

0 > f(a) > f(b)

Figure 7: Possible Solutions to Complementarity Problem, f Strictly Decreasing

50

a b

0

f(a) < f(b) < 0

a b

0

f(a) < 0 < f(b)

a b

0

0 < f(a) < f(b)

Figure 8: Possible Solutions to Complementarity Problem, f Strictly Increasing

51

Numerical Solution Methods

• A complementarity problem can be recast as an
equivalent root-finding problem and solved using
standard nonlinear equation methods such as Newton’s
or Broyden’s method.

• In particular, x solves the complementarity problem
f(x) ⊥ [a, b] if and only if it solves the rootfinding problem

f̂(x) = min(max(f(x), a− x), b− x) = 0

where min and max are applied row–wise.
• Attempting to solve f(x) ⊥ [a, b] by computing the root of
f̂(x), the so-called “min-max” formulation, is
computationally inexpensive and often works well in
practice.

52

• However, the “min-max” formulation leads to a “kinky”
problem that sometimes encounters computational
difficulties.

• In can also be shown that x solves the complementarity
problem f(x) ⊥ [a, b] if and only if it solves the rootfinding
problem

f̃(x) = ϕ−(ϕ+(f(x), a− x), b− x) = 0

where
ϕ±
i (u, v) = ui + vi ±

√
u2i + v2i .

• Attempting to compute the root of f̃(x), the so-called
“semi-smooth” formulation, is computationally more
expensive, but presents a smoother problem that can
often be solved if the other cannot.

53

The MCP class

• The CompEcon package provides class MCP for solving the
nonlinear complementarity problem f(x) ⊥ [a, b] where
f : ℜn 7→ ℜn.

• A nonlinear complementarity problem is created as
follows:

from compecon import MCP
a, b = ... #lower and upper bounds
def f(x): #objective function

fval = ... #function value
fjac = ... #function Jacobian
return fval, fjac

problem = MCP(f, a, b)

54

Solving by “min-max” transformation

• To use the “min-max” transformation, just call the .zero
method on the MCP object, providing an initial value x0,
and setting the option transform='minmax'

x = problem.zero(x0, transform='minmax')
• On output, x is the solution of the problem.
• To check the value of f , get the attribute problem.fx
• Notice that the steps can be combined as in:

x = MCP(f, a, b).zero(x0, transform='minmax')

55

Solving by “semismooth” transformation

• To use the “min-max” transformation, again call .zero on
the MCP object, providing an initial value x0, and setting
transform='ssmooth'

x = problem.zero(x0, transform='ssmooth')
• On output, x is the root of the problem.
• To check the value of f , get the attribute problem.fx
• Again, the steps can be combined as in:

x = MCP(f,a,b).zero(x0,transform='ssmooth')

56

Example 9:

A simple nonlinear
complementarity problem

• Consider the complementarity problem f(x, y) ⊥ [a, b]

where

f(x, y) =

[
1 + xy − 2x3 − x

2x2 − y

]
and 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, that is,

a =

[
0

0

]
b =

[
1

1

]
.

57

• To solve the model using CompEcon class MCP, first code
the function, and pass it to MCP together with the bounds:

def func(z):
x, y = z
return np.array([1 + x*y - 2*x**3 - x,

2*x**2 - y])
F = MCP(func, [0, 0], [1,1])

• Then, to solve it starting from (x, y) = (0.5, 0.5) using the
“minmax” transformation

x0 = [0.5, 0.5]
x = F.zero(x0, transform='minmax')

• After 8 iterations, a solution x = (0.7937, 1) is generated.

58

• The solution above was computed without coding the
Jacobian

• To compute the solution with the Jacobian, change the
definition of func to

def func2(z):
x, y = z
f = [1 + x*y - 2*x**3 - x, 2*x**2 - y]
J = [[y-6*x**2-1, x],[4*x, -1]]
return np.array(f), np.array(J)

F2 = MCP(func2, [0, 0], [1,1])
x = F2.zero(x0, transform='minmax')

• After 4 iterations, a solution x = (0.7937, 1) is generated.

59

Example 10:

Trade between 3 countries

• A commodity is produced and consumed in three
countries.

• Demand and supply in the three countries is given by:

Demand Supply

Country 1: p = 42− 2q p = 9 + 1q

Country 2: p = 54− 3q p = 3 + 2q

Country 3: p = 51− 1q p = 18 + 1q

• The unit costs of transportation are:

From / to Country 1 Country 2 Country 3

Country 1: 0 3 9
Country 2: 3 0 3
Country 3: 6 3 0

60

To solve the model, set the parameter and define a function
market that takes the vector of flows x as input and returns
the potential arbitrage profits fval, with fjac empty:

import numpy as np
from compecon import MCP

A = np.array
as_, bs = A([9, 3, 18]), A([1, 2, 1]) #supply
ad, bd = A([42, 54, 51]), A([2, 3, 1]) #demand
c = A([[0, 3, 9], [3, 0, 3],[6, 3, 0]]) #transp.cost

def market(x, jac=False):
quantities = x.reshape((3,3))
ps = as_ + bs * quantities.sum(0)
pd = ad - bd * quantities.sum(1)
ps, pd = np.meshgrid(ps, pd)
fval = (pd - ps - c).flatten()
return (fval, None) if jac else fval

61

Then create a MCP object

a = np.zeros(9)
b = np.full(9, np.inf)
Market = MCP(market, a, b)

and solving starting from zero quantities:

x0 = np.zeros(9)
x = Market.zero(x0, transform='minmax')

quantities = x.reshape(3,3)
prices = as_ + bs * quantities.sum(0)
exports = quantities.sum(0) - quantities.sum(1)

62

After 31 iterations, the solution

quantities =
[[9. -0. 0.]
[1.6347 7.3653 0.]
[4.3653 4.6347 12.]]

prices =
[24. 27. 30.]

exports =
[6. 3. -9.]

is generated.

63

	Introduction
	Function Iteration
	Newton's Method
	Quasi-Newton Methods
	Numerical Examples using CompEcon
	Practical Issues
	Complementarity Problems

