
Lecture 2
Linear Equations

Randall Romero Aguilar, PhD
II Semestre 2018
Last updated: August 26, 2018

Universidad de Costa Rica
SP6534 - Economía Computacional

Table of contents

1. Introduction

2. Gaussian Elimination

3. Rounding Error

4. Pivoting

5. Ill-Conditioning

6. Sparse Matrices

Introduction

Linear equation

An n-dimensional linear equation takes the form

Ax = b

where

A is a known n× n matrix
b is a known n× 1 vector
x is an unknown n× 1 vector to be determined

1

Linear equations are ubiquitous in computational economics

• Linear equations arise naturally in many applications:
• Linear multicommodity market equilibrium models
• Finite-state financial market models
• Markov chain models
• Ordinary least squares

• Linear equations, however, more often arise indirectly
when numerically solving economic models involving
nonlinear and functional equations:

• Nonlinear multicommodity market models
• Multiperson static game models
• Dynamic optimization models
• Rational expectations models

2

• Because linear equations are fundamental in
computational economic applications, we study them
carefully.

• In practice, we will often need to solve very large linear
equations many times.

• Execution speed, storage requirements, and rounding
error are important practical issues.

3

Gaussian Elimination

Gaussian Elimination

• A linear equation may be solved using Gaussian
Elimination.

• Gaussian elimination employs elementary row operations:

• Interchange two rows
• Multiply a row by a nonzero constant
• Add a nonzero multiple of one row to another

• Elementary row operations alter the form of a linear
equation without changing its solution.

4

Example 1:

Gaussian elimination

• Let us use Gaussian elimination to solve the linear
equation 1 1 2

3 4 8

2 1 1


x1x2
x3

 =

 5

18

6

 ,

• ... which may also be written

x1 + x2 + 2x3 = 5

3x1 + 4x2 + 8x3 = 18

2x1 + x2 + x3 = 6

5

Starting from Add row 2 to row 3
x1 + x2 + 2x3 = 5 x1 + x2 + 2x3 = 5

3x1 + 4x2 + 8x3 = 18 x2 + 2x3 = 3

2x1 + x2 + x3 = 6 − x3 = −1

Add -3 times row 1 to row 2 Multiply row 3 by -1
x1 + x2 + 2x3 = 5 x1 + x2 + 2x3 = 5

x2 + 2x3 = 3 x2 + 2x3 = 3

2x1 + x2 + x3 = 6 x3 = 1

Add -2 times row 1 to row 3 Solve by backward recursion
x1 + x2 + 2x3 = 5 x3 = 1

x2 + 2x3 = 3 x2 = 3− 2x3 = 1

− x2 − 3x3 = −4 x1 = 5− x2 − 2x3 = 2

6

Confirm the computed solution is correct by verifying that1 1 2

3 4 8

2 1 1


21
1

 =

 5

18

6


or, equivalently,

1 · 2 + 1 · 1 + 2 · 1 = 5

3 · 2 + 4 · 1 + 8 · 1 = 18

2 · 2 + 1 · 1 + 1 · 1 = 6

7

• In the preceding example, we used elementary row
operations to nullify sub-diagonal terms and transform
the linear equation to unit upper diagonal form, making it
easier to solve recursively.

• Gaussian elimination is implemented on a computer using
an efficient computational and storage strategy called L-U
factorization.

8

Why use Gaussian elimination to solve linear equations?

• Gaussian elimination is the most efficient known method
for solving a general n-dimensional linear equation
Ax = b.

• For large n, Gaussian elimination requires about n3/3 + n2

multiplication/division operations.
• Explicitly computing A−1b requires about n3 + n2

operations.
• Cramer’s rule requires (n+ 1)! operations.
• For n = 10, the number of operations are

Gaussian Elimination 430
Explicit Inverse 1,100
Cramer’s Rule 40,000,000

9

• The numpy.linalg function solve uses Gaussian
elimination to solve linear equations.

• For example, to solve the linear equation of the preceding
example, execute the script

import numpy as np
from numpy.linalg import solve

A = np.array([[1, 1, 2],
[3, 4, 8],
[2, 1, 1]])

b = np.array([5, 18, 6])
x = solve(A, b)
print(x)

• This should return
[2. 1. 1.]

10

Rounding Error

Rounding Error

• A computer has finite storage and can represent only
finitely many numbers exactly.

• Thus, exact arithmetic and computer arithmetic do not
always agree.

• If you attempt to compute a number that cannot be
represented exactly on a computer, the result will be
rounded to the nearest representable number,
introducing rounding error.

• In particular, when adding or subtracting two numbers of
extremely different magnitudes, the smaller number is
effectively ignored.

11

Example 2:

Roundig error

• In exact arithmetic

(ϵ+ 1)− 1 = ϵ+ (1− 1) = ϵ

• However, in Python computer arithmetic
e = 1e-20
x = (e + 1) - 1
y = e + (1 - 1)

• ... will return
x = 0.0
y = 1e-20

12

Pivoting

• Rounding error can cause problems when solving linear
equations.

• Consider the linear equation[
ϵ 1

1 1

][
x1

x2

]
=

[
1

2

]

where ϵ = 10−17.
• One can easily verify that the exact solution is

x1 = 1
1−ϵ , which is slightly more than 1

x2 = 1−2ϵ
1−ϵ , which is slightly less than 1

13

• To solve the linear equation using Gaussian elimination,
add −1/ϵ times the first row to the second row[

ϵ 1

0 1− 1/ϵ

][
x1

x2

]
=

[
1

2− 1/ϵ

]

• then solve recursively

x2 = 2−1/ϵ
1−1/ϵ

x1 = 1−x2
ϵ

14

• If you compute x1 and x2 in this manner in Python,
e = 1e-17
x2 = (2-1/e) / (1-1/e)
x1 = (1-x2)/e

the operations return
x2 = 1.0
x1 = 0.0

• The computed value for x1 is grossly inaccurate.
• What happened?

15

• In the first step of Gaussian elimination, we computed

x2 =
2− 1/ϵ

1− 1/ϵ

• However, since 1/ϵ is very large compared to 1 or 2,
rounding error was introduced, and the computer actually
computed

x2 =
−1/ϵ

−1/ϵ

which evaluated to exactly 1.
• We then computed

x1 =
1− x2

ϵ

which evaluated to exactly 0.

16

• Now solve the linear equation again by Gaussian
elimination, but first interchange the two rows, which in
theory will not affect the solution[

1 1

ϵ 1

][
x1

x2

]
=

[
2

1

]
• Now add −ϵ times the first row to the second row[

1 1

0 1− ϵ

][
x1

x2

]
=

[
2

1− 2ϵ

]
• then solve recursively

x2 = 1−2ϵ
1−ϵ

x1 = 2− x2

17

• If you compute x1 and x2 in this manner in Python
e = 1e-17
x2 = (1-2*e) / (1-e)
x1 = 2 - x2

the operations return
x2 = 1.0
x1 = 1.0

• The computed values for x1 and x2 are a little off, but are
much more accurate than the first values we computed.

• Why did interchanging the two rows improve the accuracy
of the computed solution?

18

• The inaccuracy of the first solution was due to rounding
error caused by the very small magnitude of the diagonal
element ϵ.

• By interchanging the two rows first, we brought a number
of much larger magnitude into the diagonal, which
reduced rounding error in subsequent computations.

• Interchanging rows to make the magnitude of the
diagonal element as large as possible is called pivoting.

• Pivoting substantially enhances the computational
accuracy of Gaussian elimination.

• All good linear solution solvers, including the Python
backslash operator, employ pivoting.

19

Ill-Conditioning

Ill-Conditioning

• Consider the n-dimensional linear equation Ax = b.
• If small perturbations in b lead to disproportionately large
changes in x, we say A is ill-conditioned or nearly singular.

• If A is ill-conditioned, unavoidable rounding errors in
representation of b in a computer make it impossible to
compute an accurate solution to Ax = b.

• Ill-conditioning is endemic to the matrix A and cannot be
corrected with simple tricks such as pivoting.

• The only way to deal with ill-conditioning is to avoid it.

20

Ill-Conditioning and the condition number

• Ill-conditioning is measured by the condition number of
A.

• The condition number is the maximum percentage change
in the size of x per unit percentage change in the size of b.

• Technically, the condition number is the ratio its largest
and smallest singular values.

• Rule of Thumb: Computed value of x loses one significant
digit per power of 10 of the condition number of A.

• The condition number is always greater than or equal to 1.

21

An ill-conditioned matrix: Vandermonde

• Consider the notorious Vandermonde matrices.
• The n× n Vandermonde matrix has typical element

Aij = in−j

• For example, for n = 4

A =


1 1 1 1

8 4 2 1

27 9 3 1

64 16 4 1



22

• Let us solve the linear equation

Ax = b

where A is the n× n Vandermonde matrix and b is the
row-sum of A, that is, the n× 1 vector with typical element

bi =

n∑
j=1

Aij

• By construction, the exact solution to this linear equation
is an n× 1 vector x containing all ones.

23

• To solve the linear equation and evaluate its precision,
define the function errorVander

def errorVander(n):
A = np.vander(np.arange(1,n+1))
b = A @ np.ones(n)
x = solve(A, b)
error np.max(abs(x-1))
return x, error

• Here, we compute the matrix A using the special numpy
utility vander and we compute the maximum error
among the elements of the computed solution.

24

• With n = 4, executing this function returns, as expected,
x = [1. 1. 1. 1.]
error = 0.0

• With n = 64, however, executing the script returns
LinAlgError: Singular matrix

• Warning indicates A is ill-conditioned.

25

6 7 8 9 10 11
n

6

7

8

9

10

11

12

13

lo
g 1

0
C

on
di

tio
n

N
um

be
r

Vandermonde Matrix Condition Numbers

6 7 8 9 10 11
n

14

12

10

8

6

lo
g 1

0
Er

ro
r

Approximation Error for I V 1V

Figure 1: Ill-Conditioning of Vandermonde Matrices

26

Sparse Matrices

Sparse Matrices

• A sparse matrix is a matrix that consists mostly of zeros.
• Solving Ax = b when A is sparse using conventional
Gaussian elimination will consists mostly of meaningless,
but costly, operations involving multiplication or addition
with zero.

• Execution speed can often be dramatically increased by
avoiding these useless operations.

27

• Scipy has special utilities for efficiently storing sparse
matrices and operating with them.

• In particular, in scipy.sparse, csr_matrix(A) creates a
version of the matrix A stored in a sparse matrix format, in
which only the nonzero elements and their indices are
explicitly stored.

28

• Execute the script
import numpy as np
import scipy as sp

A = array([[0,0,0,5],
[0,2,0,0],
[0,0,0,0],
[0,0,4,0]])

S = sp.sparse.csr_matrix(A)
print(S)

• This should return
(0, 3) 5
(1, 1) 2
(3, 2) 4

29

• Storing a sparse matrix in sparse format requires only a
fraction of the space required to store it in full format.

• If A has only q percent nonzero entries, the space required
to store S will be 3q percent of the space required to store
A.

• For example a 1000× 1000 tridiagonal matrix will require 1
million units of storage in full format, but only 8,994 units
of storage in sparse format, a savings of 99%.

30

• The scipy.sparse.linalg function spsolve applies
Gaussian elimination to exploit the sparseness of sparse
matrix.

• In particular, if S = csr_matrix(A) is large but sparse,
both

x = solve(A, b)
x = spsolve(S,b)

will produce the same results, but the latter expression
will execute faster by avoiding unnecessary operations
with zeros.

31

Example 3:

Solving a sparse system of
equations

Consider the problem of solving Ax = b when A is a
1000× 1000 tridiagonal matrix.

T = 1000
A = np.eye(T) - 2*np.eye(T,k=1) + 3*np.eye(T,k=-1)
S = csr_matrix(A)
b = A.sum(axis=1)

In an interactive session, if you type %timeit solve(A,b)
you will get (depending on your computer speed)

21.1 ms ± 734 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)

as compared to %timeit spsolve(S,b)
513 µs ± 8.25 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

That is, solving the sparse system took 2.43% as long as doing
the full array.

32

	Introduction
	Gaussian Elimination
	Rounding Error
	Pivoting
	Ill-Conditioning
	Sparse Matrices

