UCR
 UNIVERSIDADDE COSTARICA

Lecture 2

Linear Equations

Randall Romero Aguilar, PhD
II Semestre 2018
Last updated: August 26, 2018
Universidad de Costa Rica
SP6534-Economía Computacional

Table of contents

1. Introduction
2. Gaussian Elimination
3. Rounding Error
4. Pivoting
5. Ill-Conditioning
6. Sparse Matrices

Introduction

Linear equation

An n-dimensional linear equation takes the form

$$
A x=b
$$

where
A is a known $n \times n$ matrix
b is a known $n \times 1$ vector
x is an unknown $n \times 1$ vector to be determined

Linear equations are ubiquitous in computational economics

- Linear equations arise naturally in many applications:
- Linear multicommodity market equilibrium models
- Finite-state financial market models
- Markov chain models
- Ordinary least squares
- Linear equations, however, more often arise indirectly when numerically solving economic models involving nonlinear and functional equations:
- Nonlinear multicommodity market models
- Multiperson static game models
- Dynamic optimization models
- Rational expectations models
- Because linear equations are fundamental in computational economic applications, we study them carefully.
- In practice, we will often need to solve very large linear equations many times.
- Execution speed, storage requirements, and rounding error are important practical issues.

Gaussian Elimination

Gaussian Elimination

- A linear equation may be solved using Gaussian Elimination.
- Gaussian elimination employs elementary row operations:
- Interchange two rows
- Multiply a row by a nonzero constant
- Add a nonzero multiple of one row to another
- Elementary row operations alter the form of a linear equation without changing its solution.

Example 1:
Gaussian elimination

- Let us use Gaussian elimination to solve the linear equation

$$
\left[\begin{array}{lll}
1 & 1 & 2 \\
3 & 4 & 8 \\
2 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
5 \\
18 \\
6
\end{array}\right],
$$

- ... which may also be written

$$
\begin{array}{rr}
x_{1}+x_{2}+2 x_{3}=5 \\
3 x_{1}+4 x_{2}+8 x_{3}=18 \\
2 x_{1}+x_{2}+x_{3}=6
\end{array}
$$

Starting from

$x_{1}+x_{2}+2 x_{3}=5$	
$3 x_{1}+4 x_{2}+8 x_{3}=18$	
$2 x_{1}+x_{2}+x_{3}=$	6

Add -3 times row 1 to row 2

$x_{1}+x_{2}+2 x_{3}$	$=5$
$x_{2}+2 x_{3}$	$=3$
$2 x_{1}+x_{2}+x_{3}$	$=6$

Add -2 times row 1 to row 3

$$
\begin{aligned}
& x_{1}+x_{2}+2 x_{3}=5 \quad x_{3}=1 \\
& x_{2}+2 x_{3}=3 \quad x_{2}=3-2 x_{3}=1 \\
& -x_{2}-3 x_{3}=-4 \quad x_{1}=5-x_{2}-2 x_{3}=2
\end{aligned}
$$

Confirm the computed solution is correct by verifying that

$$
\left[\begin{array}{lll}
1 & 1 & 2 \\
3 & 4 & 8 \\
2 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
2 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
5 \\
18 \\
6
\end{array}\right]
$$

or, equivalently,

$$
\begin{aligned}
& 1 \cdot 2+1 \cdot 1+2 \cdot 1=5 \\
& 3 \cdot 2+4 \cdot 1+8 \cdot 1=18 \\
& 2 \cdot 2+1 \cdot 1+1 \cdot 1=6
\end{aligned}
$$

- In the preceding example, we used elementary row operations to nullify sub-diagonal terms and transform the linear equation to unit upper diagonal form, making it easier to solve recursively.
- Gaussian elimination is implemented on a computer using an efficient computational and storage strategy called L-U factorization.

Why use Gaussian elimination to solve linear equations?

- Gaussian elimination is the most efficient known method for solving a general n-dimensional linear equation $A x=b$.
- For large n, Gaussian elimination requires about $n^{3} / 3+n^{2}$ multiplication/division operations.
- Explicitly computing $A^{-1} b$ requires about $n^{3}+n^{2}$ operations.
- Cramer's rule requires $(n+1)$! operations.
- For $n=10$, the number of operations are

Gaussian Elimination	430
Explicit Inverse	1,100
Cramer's Rule	$40,000,000$

- The numpy.linalg function solve uses Gaussian elimination to solve linear equations.
- For example, to solve the linear equation of the preceding example, execute the script
import numpy as np
from numpy.linalg import solve

$$
\begin{aligned}
& A=n p \cdot \operatorname{array}([[1,1,2], \\
& {[3,4,8],} \\
& [2,1,1]]) \\
& b=n p \cdot \operatorname{array}([5,18,6]) \\
& x=\operatorname{solve}(A, b) \\
& \text { print }(x)
\end{aligned}
$$

- This should return

$$
\left[\begin{array}{lll}
2 . & 1 . & 1 .
\end{array}\right]
$$

Rounding Error

Rounding Error

- A computer has finite storage and can represent only finitely many numbers exactly.
- Thus, exact arithmetic and computer arithmetic do not always agree.
- If you attempt to compute a number that cannot be represented exactly on a computer, the result will be rounded to the nearest representable number, introducing rounding error.
- In particular, when adding or subtracting two numbers of extremely different magnitudes, the smaller number is effectively ignored.

Example 2:
Roundig error

- In exact arithmetic

$$
(\epsilon+1)-1=\epsilon+(1-1)=\epsilon
$$

- However, in Python computer arithmetic

$$
\begin{aligned}
& e=1 e-20 \\
& x=(e+1)-1 \\
& y=e+(1-1)
\end{aligned}
$$

- ... will return

$$
\begin{aligned}
& x=0.0 \\
& y=1 e-20
\end{aligned}
$$

Pivoting

- Rounding error can cause problems when solving linear equations.
- Consider the linear equation

$$
\left[\begin{array}{ll}
\epsilon & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

where $\epsilon=10^{-17}$.

- One can easily verify that the exact solution is

$$
\begin{aligned}
& x_{1}=\frac{1}{1-\epsilon}, \quad \text { which is slightly more than } 1 \\
& x_{2}=\frac{1-2 \epsilon}{1-\epsilon}, \quad \text { which is slightly less than } 1
\end{aligned}
$$

- To solve the linear equation using Gaussian elimination, add $-1 / \epsilon$ times the first row to the second row

$$
\left[\begin{array}{cc}
\epsilon & 1 \\
0 & 1-1 / \epsilon
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
1 \\
2-1 / \epsilon
\end{array}\right]
$$

- then solve recursively

$$
\begin{aligned}
& x_{2}=\frac{2-1 / \epsilon}{1-1 / \epsilon} \\
& x_{1}=\frac{1-x_{2}}{\epsilon}
\end{aligned}
$$

- If you compute x_{1} and x_{2} in this manner in Python,

$$
\begin{aligned}
& e=1 e-17 \\
& x 2=(2-1 / e) /(1-1 / e) \\
& x 1=(1-x 2) / e
\end{aligned}
$$

the operations return

$$
\begin{aligned}
& x 2=1.0 \\
& x 1=0.0
\end{aligned}
$$

- The computed value for x_{1} is grossly inaccurate.
- What happened?
- In the first step of Gaussian elimination, we computed

$$
x_{2}=\frac{2-1 / \epsilon}{1-1 / \epsilon}
$$

- However, since $1 / \epsilon$ is very large compared to 1 or 2, rounding error was introduced, and the computer actually computed

$$
x_{2}=\frac{-1 / \epsilon}{-1 / \epsilon}
$$

which evaluated to exactly 1.

- We then computed

$$
x_{1}=\frac{1-x_{2}}{\epsilon}
$$

which evaluated to exactly 0.

- Now solve the linear equation again by Gaussian elimination, but first interchange the two rows, which in theory will not affect the solution

$$
\left[\begin{array}{ll}
1 & 1 \\
\epsilon & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
2 \\
1
\end{array}\right]
$$

- Now add $-\epsilon$ times the first row to the second row

$$
\left[\begin{array}{cc}
1 & 1 \\
0 & 1-\epsilon
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
2 \\
1-2 \epsilon
\end{array}\right]
$$

- then solve recursively

$$
\begin{aligned}
& x_{2}=\frac{1-2 \epsilon}{1-\epsilon} \\
& x_{1}=2-x_{2}
\end{aligned}
$$

- If you compute x_{1} and x_{2} in this manner in Python

$$
\begin{aligned}
& e=1 e-17 \\
& x 2=(1-2 * e) /(1-e) \\
& x 1=2-x 2
\end{aligned}
$$

the operations return

$$
\begin{aligned}
& x 2=1.0 \\
& x 1=1.0
\end{aligned}
$$

- The computed values for x_{1} and x_{2} are a little off, but are much more accurate than the first values we computed.
- Why did interchanging the two rows improve the accuracy of the computed solution?
- The inaccuracy of the first solution was due to rounding error caused by the very small magnitude of the diagonal element ϵ.
- By interchanging the two rows first, we brought a number of much larger magnitude into the diagonal, which reduced rounding error in subsequent computations.
- Interchanging rows to make the magnitude of the diagonal element as large as possible is called pivoting.
- Pivoting substantially enhances the computational accuracy of Gaussian elimination.
- All good linear solution solvers, including the Python backslash operator, employ pivoting.

Ill-Conditioning

Ill-Conditioning

- Consider the n-dimensional linear equation $A x=b$.
- If small perturbations in b lead to disproportionately large changes in x, we say A is ill-conditioned or nearly singular.
- If A is ill-conditioned, unavoidable rounding errors in representation of b in a computer make it impossible to compute an accurate solution to $A x=b$.
- Ill-conditioning is endemic to the matrix A and cannot be corrected with simple tricks such as pivoting.
- The only way to deal with ill-conditioning is to avoid it.

Ill-Conditioning and the condition number

- Ill-conditioning is measured by the condition number of A.
- The condition number is the maximum percentage change in the size of x per unit percentage change in the size of b.
- Technically, the condition number is the ratio its largest and smallest singular values.
- Rule of Thumb: Computed value of x loses one significant digit per power of 10 of the condition number of A.
- The condition number is always greater than or equal to 1.

An ill-conditioned matrix: Vandermonde

- Consider the notorious Vandermonde matrices.
- The $n \times n$ Vandermonde matrix has typical element

$$
A_{i j}=i^{n-j}
$$

- For example, for $n=4$

$$
A=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
8 & 4 & 2 & 1 \\
27 & 9 & 3 & 1 \\
64 & 16 & 4 & 1
\end{array}\right]
$$

- Let us solve the linear equation

$$
A x=b
$$

where A is the $n \times n$ Vandermonde matrix and b is the row-sum of A, that is, the $n \times 1$ vector with typical element

$$
b_{i}=\sum_{j=1}^{n} A_{i j}
$$

- By construction, the exact solution to this linear equation is an $n \times 1$ vector x containing all ones.
- To solve the linear equation and evaluate its precision, define the function errorVander def errorVander(n):

$$
\begin{aligned}
& A=n p \cdot v a n d e r(n p \cdot \operatorname{arange}(1, n+1)) \\
& b=A \text { ap.ones }(n) \\
& x=\operatorname{solve}(A, b) \\
& \text { error np.max }(\operatorname{abs}(x-1)) \\
& \text { return } x, \text { error }
\end{aligned}
$$

- Here, we compute the matrix A using the special numpy utility vander and we compute the maximum error among the elements of the computed solution.
- With $n=4$, executing this function returns, as expected,

$$
\begin{aligned}
& x=\left[\begin{array}{llll}
1 . & 1 . & 1 . & 1 .
\end{array}\right] \\
& \text { error }=0.0
\end{aligned}
$$

- With $n=64$, however, executing the script returns

LinAlgError: Singular matrix

- Warning indicates A is ill-conditioned.

Figure 1: Ill-Conditioning of Vandermonde Matrices

Sparse Matrices

Sparse Matrices

- A sparse matrix is a matrix that consists mostly of zeros.
- Solving $A x=b$ when A is sparse using conventional Gaussian elimination will consists mostly of meaningless, but costly, operations involving multiplication or addition with zero.
- Execution speed can often be dramatically increased by avoiding these useless operations.
- Scipy has special utilities for efficiently storing sparse matrices and operating with them.
- In particular, in scipy.sparse, csr_matrix(A) creates a version of the matrix A stored in a sparse matrix format, in which only the nonzero elements and their indices are explicitly stored.
- Execute the script
import numpy as np import scipy as sp

$$
\begin{array}{r}
A=\operatorname{array}([[0,0,0,5], \\
\\
{[0,2,0,0]} \\
{[0,0,0,0]} \\
[0,0,4,0]])
\end{array}
$$

S = sp.sparse.csr_matrix(A) print(S)

- This should return
$(0,3)$
5
$(1,1)$
2
$(3,2)$
4
- Storing a sparse matrix in sparse format requires only a fraction of the space required to store it in full format.
- If A has only q percent nonzero entries, the space required to store \mathbf{S} will be $3 q$ percent of the space required to store A.
- For example a 1000×1000 tridiagonal matrix will require 1 million units of storage in full format, but only 8,994 units of storage in sparse format, a savings of 99%.
- The scipy.sparse.linalg function spsolve applies Gaussian elimination to exploit the sparseness of sparse matrix.
- In particular, if $S=$ csr_matrix(A) is large but sparse, both

$$
\begin{aligned}
& x=\operatorname{solve}(A, b) \\
& x=\operatorname{spsolve}(S, b)
\end{aligned}
$$

will produce the same results, but the latter expression will execute faster by avoiding unnecessary operations with zeros.

Example 3:
Solving a sparse system of equations

Consider the problem of solving $A x=b$ when A is a 1000×1000 tridiagonal matrix.

$$
\begin{aligned}
& T=1000 \\
& A=n p \cdot \operatorname{eye}(T)-2 * n p \cdot \operatorname{eye}(T, k=1)+3 * n p \cdot \operatorname{eye}(T, k=-1) \\
& S=\operatorname{csr} \text { _matrix(A) } \\
& b=A \cdot \operatorname{sum}(\text { axis=1) }
\end{aligned}
$$

In an interactive session, if you type \%timeit solve(A, b) you will get (depending on your computer speed)

```
21.1 ms }\pm734\mu\textrm{s}\mathrm{ per loop (mean }\pm\mathrm{ std. dev. of }7\mathrm{ runs, 10 loops each)
```

as compared to \%timeit spsolve(S, b)

```
513 \mus \pm 8.25 \mus per loop (mean \pm std. dev. of 7 runs, 1000 loops each)
```

That is, solving the sparse system took 2.43\% as long as doing the full array.

