
Lecture 0
Introduction to Python

Randall Romero Aguilar, PhD
II Semestre 2018
Last updated: July 12, 2018

Universidad de Costa Rica
SP6534 - Economía Computacional

Table of contents

1. Getting Python and CompEcon

2. Python basics

3. Execution control

4. Importing modules

5. Defining functions

Getting Python and CompEcon

About Python i

• Python is free – is open source distributable software
• Python is easy to learn – has a simple language syntax
• Python is easy to read – is uncluttered by punctuation
• Python is easy to maintain – is modular for simplicity
• Python is “batteries included” – provides a large standard
library for easy integration into your own programs

• Python is interactive – has a terminal for debugging and
testing snippets of code

• Python is portable – runs on a wide variety of hardware
platforms and has the same interface on all platforms

• Python is interpreted – there is no compilation required

1

About Python ii

• Python is high-level – has automatic memory
management

• Python is extensible – allows the addition of low-level
modules to the interpreter for customization

• Python is versatile – supports both procedure-orientated
programming and objectorientated programming (OOP)

• Python is flexible – can create console programs,
windowed GUI (Graphical User Interface) applications, and
CGI (Common Gateway Interface) scripts to process web
data

2

Downloading Python

The easiest way to get Python is to download it from Anaconda
at https://www.anaconda.com/download/

3

https://www.anaconda.com/download/

Python 2 vs Python 3

• There are two major versions of Python: 2 vs 3
• Make sure to get the 3.6 version.

4

Installing CompEcon

• In this class we will use the CompEcon package.
• To install it, open the conda terminal and run this

• To verify that this was done correctly, run

• After a few seconds, you should just get the prompt back.

5

Running Python

There are several ways to run Python code, among them

• in a terminal (command window) type python
• in Jupyter QtConsole
• in Jupyter Notebook
• in Spyder

For the first few examples, we use Jupyter QtConsole.

6

Python basics

Employing variables

• A variable is a container in which a data value can be
stored within the computer’s memory.

• The stored value can then be referenced using the
variable’s name.

7

Data types

There are four basic data types

int integers
float floating points (decimal numbers)
bool boolean (True or False)
str strings (text)

8

Collection types

The most commonly used collection typer are

list an ordered, mutable list of values
tuple an ordered, unmutable list of values
set a unordered, mutable list of unique values
dict an unordered dictionary

9

Arithmetic operators

Operator Operation Example Result

+ Addition 2 + 3 5
- Subtraction 5 - 1.0 4.0
* Multiplication 4 * 4 16
/ Division 9 / 3 3.0
% Modulus 10 % 3 1
// Floor division 10 // 3 3
** Exponent 5 ** 2 25

10

Defining multiple variables

In Python it is possible to define several variables in a single
statement

n, a, b = 12, -2.0, 2.0
x = y = z = 1

11

Assigning values

Operator Example Equivalent

= a = b a = b
+= a += b a = (a + b)
-= a -= b a = (a - b)
*= a *= b a = (a * b)
/= a /= b a = (a / b)
%= a %= b a = (a % b)
//= a //= b a = (a // b)
**= a **= b a = (a ** b)

12

Comparing values

Operator Comparative test Example Result

== Equality 5 == 5.0 True
!= Inequality 4 != 4.0 False
> Greater than 5 > 4 True
< Less than 5 < 4 False
>= Greater than or equal to 4 >= 4 True
<= Less than or equal to 5 <= 5 True

13

Assessing logic

Operator Operation Example Result

and Logical AND 1 > 2 and 1 < 4 False
or Logical OR 1 > 2 or 1 < 4 True
not Logical NOT not (5 > 4) False

14

Examining conditions

ifTrueThis if testExpression else ifFalseThis

For example, to pick the smallest number from a pair

smallest = a if a < b else b

15

Casting data types

Function Description

int(x) Converts x to an integer whole number
float(x) Converts x to a floating-point number
str(x) Converts x to a string representation

Some examples

'8' + '4' # '84'
int('8') + int('4') # 12
float('8') + float('4') # 12.0
str(8) + str(4) # '84'

16

Making lists

To make a list, enumerate its elements within a pair of “[]”

seasons = ['Spring', 'Summer','Autumn','Winter']

seasons = ’Spring’
0

’Summer’
1

’Autumn’
2

’Winter’
3

To access data:

seasons[2] # 'Autumn'
seasons[-3] # 'Summer'

To modify data:

seasons[2] = 'Fall'

17

Slicing

Lists can have heterogeneous data elements

mylist = [4, 3.0, 'abc', 5, 8, -3, 0 , 2]

To access a slice of data:

mylist[2:4] # ['abc', 5]
mylist[:3] # [4, 3.0, 'abc']
mylist[5:] # [-3, 0 , 2]
mylist[-2:] # [0 , 2]
mylist[3:4] # [5]
mylist[::2] # [4, 'abc', 8, 0]
mylist[1::2] # [3.0, 5, -3, 2]

18

Manipulating lists

List Method Description

list.append(x) Adds item x to the end of the list
list.extend(L) Adds all items in list L to the end of the list
list.insert(i,x) Inserts item x at index position i
list.remove(x) Removes first item x from the list
list.pop(i) Removes item at index position i and returns it
list.index(x) Returns the index position in the list of first item x
list.count(x) Returns the number of times x appears in the list
list.sort() Sort all list items, in place
list.reverse() Reverse all list items, in place

19

Tuples

A tuple is similar to a list, but once defined its content cannot
be changed. It is defined by enumerating its elements within a
pair of “()”

seasons = ['Spring', 'Summer','Autumn','Winter']

seasons = ’Spring’
0

’Summer’
1

’Autumn’
2

’Winter’
3

To access data:

seasons[2] # 'Autumn'
seasons[-3] # 'Summer'

20

Slicing

Tuples support slicing too

M = ('Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', \
'Jul','Aug','Sep','Oct','Nov','Dec')

To split the months into quarters:

Q1, Q2, Q3, Q4 = M[:3], M[3:6], M[6:9], M[9:]

Then, for example, typing Q2 returns

('Apr', 'May', 'Jun')

21

Sets

Set Method Description

set.add(x) Adds item x to the set
set.update([x,y,z]) Adds multiple items to the set
set.copy() Returns a copy of the set
set.pop() Removes one random item from the set
set.discard(x) Removes item x from set if it’s a member
set1.union(set2) Returns items that appear in either set
set1.intersection(set2) Returns items that appear in both sets
set1.difference(set2) Returns items in set1 but not in set2
set1.isdisjoint(set2) True if sets have no items in common

22

Sets: some examples

To make a set, enumerate its elements within “{ }”

M2 = {2, 4, 6, 8, 10, 12, 14}
M3 = {3, 6, 9, 12, 15}

M2.difference(M3) # {2, 4, 8, 10, 14}
M3.difference(M2) # {3, 9, 15}
M2.intersection(M3) # {6, 12}
M2.union(M3) # {2, 3, 4, 6, 8, 9, 10, 12, 14, 15}

M3.update([18, 21]) # {3, 6, 9, 12, 15, 18, 21}
M2.add(16) # {2, 4, 6, 8, 10, 12, 14, 16}
M2.isdisjoint(M3) # False

23

Dictionaries

• In Python programming a “dictionary” is a data container
that can store multiple items of data as a list of key:value
pairs.

• Unlike regular list container values, which are referenced
by their index number, values stored in dictionaries are
referenced by their associated key.

• The key must be unique within that dictionary and is
typically a string name although numbers may be used.

24

Dictionaries (example)

king = {'name': 'John Snow',
'age': 24,
'home': 'Winterfell'}

friend = dict(name='Samwell Tarly', age=22)

king['age'] # 24
king['home'] = 'Castle Black'
king['lover'] = 'Ygritte'
king['knows'] = None
del king['lover'] # killed by Olly!
king['lover'] = 'Daenerys Targaryen'

25

Execution control

Execution control

• Scripts are usually executed by running every statement in
the order they appear

• Some times, we need to execute some statements in other
ways.

• For this, we use execution control statements:
if, elif, else execute some statements once, only if

certain condition is true
while execute some statements several times, only

while certain condition is true
for execute some statements several times,

iterating over a list
continue jump to the next iteration of a while or for

loop
break stop execution of a while or for loop

26

Conditional branching with if

• The Python if keyword performs evaluates a given
expression for a Boolean value of True or False.

• This allows a program to proceed in different directions
according to the result of the test.

• The tested expression must be followed by a : colon, then
statements to be executed when the test succeeds should
follow below on separate lines and each line must be
indented from the if test line.

• The size of the indentation is not important but it must be
the same for each line.

• So the syntax looks like this:
if test-expression :

statements-to-execute-when-test-expression-is-True
statements-to-execute-when-test-expression-is-True

27

if: example

To determine if a number m is even or odd:

if m % 2 == 0:
print('m is even')

else:
print('m is odd')

The test does not necessarily have to be a boolean. The
number 0,the value None, and an empty string '', list [],
tuple () or set {}, are all interpreted as False.

if m % 5:
print('m is not divisible by 5')

else:
print('m is divisible by 5')

28

Looping while true i

• A loop is a piece of code in a program that automatically
repeats.

• One complete execution of all statements within a loop is
called an “iteration” or a “pass”.

• The length of the loop is controlled by a conditional test
made within the loop.

• While the tested expression is found to be True the loop
will continue – until the tested expression is found to be
False, at which point the loop ends.

29

Looping while true ii

• In Python programming, the while keyword creates a
loop. It is followed by the test expression then a : colon
character.

• Statements to be executed when the test succeeds should
follow below on separate lines and each line must be
indented the same space from the while test line.

• This statement block must include a statement that will at
some point change the result of the test expression
evaluation – otherwise an infinite loop is created.

• So the syntax looks like this:
while test-expression :

statements-to-execute-when-test-expression-is-True
statements-to-execute-when-test-expression-is-True

30

while: example

To get the Fibonacci series up to 100

a, b = 0, 1
while b < 100:

print(b, end=', ')
a, b = b, a + b

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89,

A different approach

fib = [1, 1]
while fib[-1]<100:

fib.append(fib[-2] + fib[-1])

[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144]
31

The range function

Sometimes we need to iterate over the integers. We can
generate then using the range function.

range(6) # 0, 1, 2, 3, 4, 5
range(2,8) # 2, 3, 4, 5, 6, 7
range(2,9,3) # 2, 5, 8
range(4, 0,-1) # 4, 3, 2, 1

32

Looping over items of an iterable

• In Python programming the for keyword loops over all
items in any iterable specified to the in keyword.

• The syntax looks like this:
for item in iterable :

statements-to-execute-on-each-iteration
statements-to-execute-on-each-iteration

• Examples of iterables:
• ranges
• lists, tuples, sets, dictionaries
• strings
• text files
• numpy arrays

33

for ... in...:: examples

• Iterating over strings
for letter in 'abcd':

print(letter.upper(), end=' ')
A B C D

• Iterating over strings
for k in range(6):

print(k**2, end=' ')
0 1 4 9 16 25

34

for ... in...:: more examples

• To keep track of the iteration number use enumerate
for i, letter in enumerate('abcd'):

print(f'{i} = {letter}', end=' | ')
0 = a | 1 = b | 2 = c | 3 = d |

• To iterate over two iterables in parallel, use zip
quantities = [3, 2, 4]
fruits = ('apple','banana','coconut')
for n, fruit in zip(quantities,fruits):

print(f'{n} {fruit}s')
3 apples
2 bananas
4 coconuts

35

List comprehensions

• Oftentimes we need to make a list of elements satisfying
certain condition, with code like this

lst = list()
for item in iterable:

if conditional:
lst.append(expression)

• This is done more succinctly by
lst = [expression for item in iterable if conditional]

36

List comprehensions: examples

• To generate the squares of even numbers less than 12
[k**2 for k in range(12) if k%2==0]
[0, 4, 16, 36, 64, 100]

• To count the number of letters in a list of words
food = ['apple','banana','carrot','grape']
[len(item) for item in food]
[5, 6, 6, 5]

37

Importing modules

Importing modules

• Python function definitions can be stored in one or more
separate files for easier maintenance and to allow them to be
used in several programs without copying the definitions into
each one.

• Each file storing function definitions is called a “module” and
the module name is the file name without the “.py” extension.

• Functions stored in the module are made available to a
program using the Python import keyword followed by the
module name.

• Although not essential, it is customary to put any import
statements at the beginning of the program.

• Imported functions can be called using their name dot-suffixed
after the module name. For example, a “sqrt” function from an
imported module named “numpy” can be called with
numpy.sqrt() 38

Some very useful modules

In our course, the following packages (= collection of modules)
will be very useful

numpy Base N-dimensional array package. Math
operations, especially linear algebra

matplotlib Comprehensive 2D plotting
pandas Data structures and analysis
scipy Fundamental library for scientific computing

compecon To solve computational economics models

39

Importing modules: examples

• To import numpy
import numpy
numpy.sqrt(9)
3.0

• Same example, but giving an “alias” to the module
import numpy as np
np.sqrt(9)
3.0

• Same example, but importing only the sqrt function
from numpy import sqrt
sqrt(9)
3.0

40

Why working with modules

• One advantage of organizing code in modules and
packages is to avoid messing the namespace.

• Modules allow having functions with the same name in
different namespaces, forcing us to be explicit about
which one we use.

41

Why working with modules: examples

• Both math and numpy have a function cos to compute cosine, but their
implementation is quite different.

• With numpy:
import numpy as np
print(np.cos(0))
print(np.cos([0,1, np.pi]))
1.0
[1. 0.54030231 -1.]

• With math
import math
print(math.cos(0))
print(math.cos([0,1, np.pi]))
1.0
TypeError Traceback (most recent call last)
<ipython-input-53-78f2f7c53c4e> in <module>()

1 print(math.cos(0))
----> 2 print(math.cos([0,1, math.pi]))

TypeError: must be real number, not list
42

Working with decimals

• Computer programs that attempt floating-point arithmetic can produce
unexpected and inaccurate results because the floating-point numbers cannot
accurately represent all decimal numbers.

item, rate = 0.70, 1.05
tax = item * rate
total = item + tax
txt, val = ['item','tax','total'], [item,tax,total]

for tt, vv in zip(txt, val):
print(f'{tt:5s} = {vv:.2f}')

item = 0.70
tax = 0.73
total = 1.44]

• With more decimals
for tt, vv in zip(txt, val):

print(f'{tt:5s} = {vv:.20f}')
item = 0.69999999999999995559
tax = 0.73499999999999998668
total = 1.43500000000000005329

43

Working with decimals: solving the rounding error

• Errors in floating-point arithmetic can be avoided using Python’s “decimal”
module. This provides a Decimal() object with which floating-point numbers
can be more accurately represented.

from decimal import Decimal
item, rate = Decimal('0.70'), Decimal('1.05')
tax = item * rate
total = item + tax
txt, val = ['item','tax','total'], [item,tax,total]

for tt, vv in zip(txt, val):
print(f'{tt:5s} = {vv:.20f}')

item = 0.70
tax = 0.74
total = 1.44]

• With more decimals
for tt, vv in zip(txt, val):

print(f'{tt:5s} = {vv:.20f}')
item = 0.70000000000000000000
tax = 0.73500000000000000000
total = 1.43500000000000000000 44

Defining functions

Defining functions

• A custom function is created using the def (definition)
keyword followed by a name of your choice and ()
parentheses.

• The programmer can choose any name for a function
except the Python keywords and the name of an existing
built-in function.

• This line must end with a : colon character, then the
statements to be executed whenever the function gets
called must appear on lines below and indented.

• So the syntax looks like this:
def function-name () :

statements-to-be-executed
statements-to-be-executed

45

Example: a function without arguments

def hello():
print('Hello')
print('Welcome to Computational Economics!')

hello()

Hello
Welcome to Computational Economics!

46

Example: a function with arguments

def c2f(c):
f = 1.8 * c + 32
print(f'{c:.1f}° Celsius equals {f:.1f} Fahrenheit')

c2f(15)

15.0° Celsius equals 59.0 Fahrenheit

47

Example: a function returning a value

def c2f(c):
f = 1.8 * c + 32
return f

x = c2f(15)
print(x)

59.0

48

Example: a function with default arguments

def c2f(c, show=False):
f = 1.8 * c + 32
if show:

print(f'{c:.1f}° Celsius = {f:.1f} Fahrenheit')
return f

c2f(15)

59.0

c2f(15, show=True) # same as c2f(15, True)

15.0° Celsius equals 59.0 Fahrenheit
59.0

49

Example: understanding scope

pi = 3.1415
def area(r):

A = pi * r**2
return A

print(area(10))
print(A)

314.15000000000003

NameError Traceback (most recent call last)
<ipython-input-91-4280c1b5ea18> in <module>()

6
7 print(area(10))

----> 8 print(A)

NameError: name 'A' is not defined 50

References

McGrath, Mike (2016). Python in Easy Steps. In Easy Steps
Limited.

51

	Getting Python and CompEcon
	Python basics
	Execution control
	Importing modules
	Defining functions

