# Food Security for Whom?

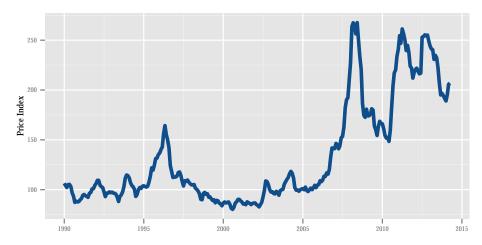
The Effectiveness of Food Reserves in Poor Developing Countries

Randall Romero-Aguilar

Seminar at Banco Central de Costa Rica June 02, 2014

#### Outline

Introduction


2 The model

Results

4 Conclusions

#### The Problem

Despite rising production, food prices are higher and increasingly volatile.

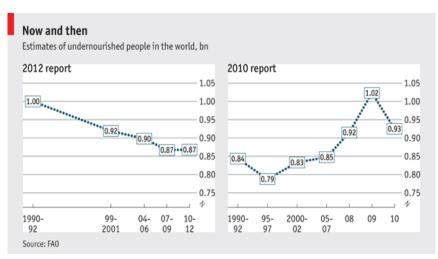


Source: FAO's cereal price index

#### ...and its consequences

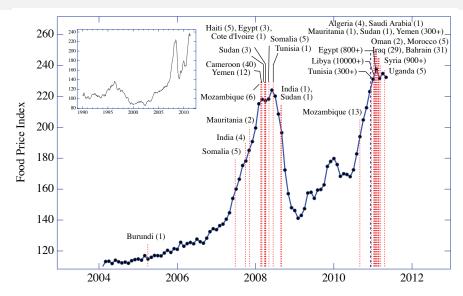
- More price uncertainty ⇒ increase in risk for farmers.
- Increase in hunger among poor net food buyers ...
  - who account for 18% of real and 97% of urban poor
  - households.
- More than 60 food riots in 30 different countries.

#### ...and its consequences


- More price uncertainty ⇒ increase in risk for farmers.
- Increase in hunger among poor net food buyers ...
  - who account for 88% of rural and 97% of urban poor households.
- More than 60 food riots in 30 different countries.

#### ...and its consequences

- More price uncertainty ⇒ increase in risk for farmers.
- Increase in hunger among poor net food buyers ...
  - who account for 88% of rural and 97% of urban poor households.
- More than 60 food riots in 30 different countries.




# Undernourished people in the world



Source: The Economist, Oct 10th 2012

#### Food riots



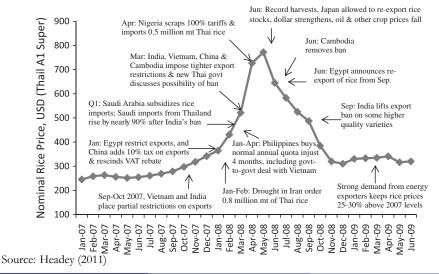
Source: Lagi, Bertrand, and Bar-Yam 2011

# Possible causes of high food prices

#### Affecting supply:

- rising oil prices;
- declining stocks and reserves;
- regional catastrophic weather;
- export restrictions;
- decline in productivity and R&D in agriculture.

# Possible causes of high food prices


#### Affecting supply:

- rising oil prices;
- declining stocks and reserves;
- regional catastrophic weather;
- export restrictions;
- decline in productivity and R&D in agriculture.

#### Affecting demand:

- strong income growth in China and India;
- biofuel production in the USA and Europe;
- preventive imports surges;
- speculation in financial markets.

# The effects of export restrictions on rice prices



#### Food reserves as a solution?

- Several authors have called for food reserves.
- Objective: welfare? hunger?
- Intermediate target: price stabilization vs. humanitarian assistance.



#### Food reserves as a solution?

- Several authors have called for food reserves.
- Objective: welfare? hunger?
- Intermediate target: price stabilization vs. humanitarian assistance.



#### Food reserves as a solution?

- Several authors have called for food reserves.
- Objective: welfare? hunger?
- Intermediate target: price stabilization vs. humanitarian assistance.



- what is the optimal size of the reserve?
- how is the country's hunger rate affected by its operations?
- is it better to store cash?
- how does the optimal operation of the reserve change if the objective is to maximize 'social welfare'?

- what is the optimal size of the reserve?
- how is the country's hunger rate affected by its operations?
- is it better to store cash.
- how does the optimal operation of the reserve change if the objective is to maximize 'social welfare'?

- what is the optimal size of the reserve?
- how is the country's hunger rate affected by its operations?
- is it better to store cash?
- how does the optimal operation of the reserve change if the objective is to maximize 'social welfare'?

- what is the optimal size of the reserve?
- how is the country's hunger rate affected by its operations?
- is it better to store cash?
- how does the optimal operation of the reserve change if the objective is to maximize 'social welfare'?

#### The logic behind grain storage is simple:

- Seven years of abundance followed by seven years of famine...
- What if country never has years of abundance?
- Opportunity cost of storing grain is very high!

- the increase on national hunger induced by an international crisis;
- to what extent a reserve alleviates this increase, and at what cost.

The logic behind grain storage is simple:

- Seven years of abundance followed by seven years of famine...
- What if country never has years of abundance?
- Opportunity cost of storing grain is very high!

- the increase on national hunger induced by an international crisis;
- to what extent a reserve alleviates this increase, and at what cost.

The logic behind grain storage is simple:

- Seven years of abundance followed by seven years of famine...
- What if country never has years of abundance?
- Opportunity cost of storing grain is very high!

- the increase on national hunger induced by an international crisis.
- to what extent a reserve alleviates this increase, and at what cost.

- Seven years of abundance followed by seven years of famine...
- What if country never has years of abundance?
- Opportunity cost of storing grain is very high!

#### To answer this, a model should quantify

- the increase on national hunger induced by an international crisis.
- to what extent a reserve alleviates this increase, and at what costs

- Seven years of abundance followed by seven years of famine...
- What if country never has years of abundance?
- Opportunity cost of storing grain is very high!

#### To answer this, a model should quantify

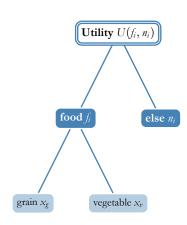
- the increase on national hunger induced by an international crisis;
- to what extent a reserve alleviates this increase, and at what cost.

- Seven years of abundance followed by seven years of famine...
- What if country never has years of abundance?
- Opportunity cost of storing grain is very high!

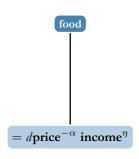
#### To answer this, a model should quantify

- the increase on national hunger induced by an international crisis;
- to what extent a reserve alleviates this increase, and at what cost.

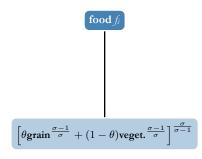
#### Outline


Introduction

2 The model


Results

4 Conclusions


- Nested utility: two goods, two food ingredients
  - Constant demand elasticities
- Substitution between ingredients
- Intertemporal, two grain prices
- Heterogeneous households: log-logistic income distribution
- Log-logistic food consumption

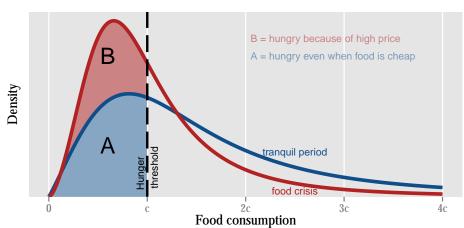


- Nested utility: two goods, two food ingredients
- Constant demand elasticities
- Substitution between ingredients
- Intertemporal, two grain prices
- Heterogeneous households: log-logistic income distribution
- Log-logistic food consumption



- Nested utility: two goods, two food ingredients
- Constant demand elasticities
- Substitution between ingredients
- Intertemporal, two grain prices
- Heterogeneous households: log-logistic income distribution
- Log-logistic food consumption




- Nested utility: two goods, two food ingredients
- Constant demand elasticities
- Substitution between ingredients
- Intertemporal, two grain prices
- Heterogeneous households: log-logistic income distribution
- Log-logistic food consumption

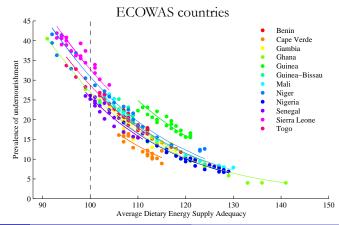
- Nested utility: two goods, two food ingredients
- Constant demand elasticities
- Substitution between ingredients
- Intertemporal, two grain prices
- Heterogeneous households: log-logistic income distribution
- Log-logistic food consumption

- Nested utility: two goods, two food ingredients
- Constant demand elasticities
- Substitution between ingredients
- Intertemporal, two grain prices
- Heterogeneous households: log-logistic income distribution
- Log-logistic food consumption

#### Hunger changes in response to food prices

$$\Gamma(P) = \left[ 1 + \left( \frac{cP^{\alpha}(G\pi)^{\eta}}{\zeta Y^{\eta} \sin^{\eta}(G\pi)} \right)^{1/G\eta} \right]^{-1}$$




#### Empirical relevance of the model

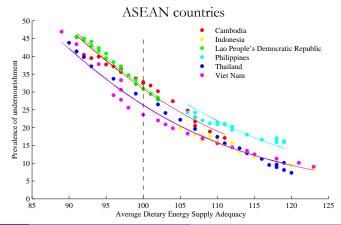
Food adequacy  $x_{it}$  and undernourishment  $\Gamma_{it}$  in ECOWAS and ASEAN

$$\log\left(\frac{\Gamma_{it}}{1-\Gamma_{it}}\right) = d_i^* - b_f \log x_{it} + \epsilon_{it}$$

Model approximates FAO's hunger estimates reasonably well.

- FAO data
- Fixed-effects
- 9 1991-2011




#### Empirical relevance of the model

Food adequacy  $x_{it}$  and undernourishment  $\Gamma_{it}$  in ECOWAS and ASEAN

$$\log\left(\frac{\Gamma_{it}}{1-\Gamma_{it}}\right) = d_i^* - b_f \log x_{it} + \epsilon_{it}$$

Model approximates FAO's hunger estimates reasonably well.

- FAO data
- Fixed-effects
- 1991-2011



### Government problem: objectives and tools

Government runs a grain stockpile to deal with price fluctuations.

- Two alternative objectives: welfare vs. hunger
- One policy tool: tariff on grain imports
- Two state variables: initial stock and grain price

$$V\left(s, p_g^*\right) = \max_{\tau} \left\{ r(\tau, p_g^*) + \delta \mathbb{E} V\left(s', p_g^{*'}\right) \right\}$$

subject to 
$$s' = (1 - \phi) \left[ s + \frac{1}{p_g^*} \Upsilon\left( \tau, p_g^* \right) \right] \ge 0$$

$$\pi_{ij} = Pr\left(p_g^{*\prime} = p_j \mid p_g^* \mid p_g^* \mid p_i\right)$$

### Government problem: objectives and tools

Government runs a grain stockpile to deal with price fluctuations.

- Two alternative objectives: welfare vs. hunger
- One policy tool: tariff on grain imports
- Two state variables: initial stock and grain price

$$V\left(s, p_g^*\right) = \max_{\mathbf{T}} \left\{ r(\tau, p_g^*) + \delta \mathbb{E} V\left(s', p_g^{*'}\right) \right\}$$
subject to 
$$s' = (1 - \phi) \left[ s + \frac{1}{p_s^*} \Upsilon\left(\tau, p_g^*\right) \right] \ge 0$$

$$s' = (1 - \phi) \left[ s + \frac{1}{p_g^*} \Upsilon\left(\overset{\triangleright}{\tau}, p_g^*\right) \right] \ge 0$$

$$\pi_{ij} = Pr\left(p_g^{*\prime} = p_j \mid p_g^* \mid p_g^* \mid p_i\right)$$

### Government problem: objectives and tools

Government runs a grain stockpile to deal with price fluctuations.

- Two alternative objectives: welfare vs. hunger
- One policy tool: tariff on grain imports
- Two state variables: initial stock and grain price

$$V\left(s, p_g^*\right) = \max_{\mathbf{T}} \left\{ r(\tau, p_g^*) + \delta \mathbb{E} V\left(s', p_g^{*'}\right) \right\}$$
subject to
$$\mathbf{s'} = (1 - \phi) \left[ s + \frac{1}{p_g^*} \Upsilon\left(\mathbf{T}, p_g^*\right) \right] \ge 0$$

$$\pi_{ij} = Pr\left(p_g^{*'} = p_j \mid p_g^* = p_i\right)$$

# Reward function $r(\tau, P)$ , by objective

| Objective, V               | Reward function, $r(\tau, p_g^*)$                          |  |
|----------------------------|------------------------------------------------------------|--|
| Hunger, $\Gamma$           | $rac{1}{1- ho}\left[1-\Gamma(	au,p_g^*) ight]^{1- ho}$    |  |
| Utility, $\mathbb{S}(v_i)$ | $rac{1}{1- ho}\mathbb{S}\left[v(	au,p_g^*) ight]^{1- ho}$ |  |

## Solving the model: The food crisis in Haiti

- Calibration of parameters: Haiti
  - $\Gamma_{2011} = 44.5\%$
  - Imports  $\approx 70\%$  of cereals consumed
  - $p_q^*$  increased 85% during crisis

- Food Crisis in Haiti:
  - Dec2007-Mar2008: rice price doubles
  - Early April 2008: violent protests in Port-au-Prince
  - April 12: Prime Minister Jacques Adouard Alexis ousted

### Solving the model: The food crisis in Haiti

- Calibration of parameters: Haiti
  - $\Gamma_{2011} = 44.5\%$
  - Imports  $\approx 70\%$  of cereals consumed
  - p<sub>g</sub><sup>\*</sup> increased 85% during crisis
- Food Crisis in Haiti:
  - Dec2007-Mar2008: rice price doubles
  - Early April 2008: violent protests in Port-au-Prince
  - April 12: Prime Minister Jacques Adouard Alexis ousted

#### Food reserve in Haiti

• Jul2013: gov't begins construction of reserve, 35.000 tonnes

"The construction of this strategic reserve reflects the desire of my
Government to promote national agricultural production, stabilize the
market price of commodities and combat food insecurity. Indeed, the fight
against hunger and extreme poverty constitutes the main pillars of
government action."

#### Food reserve in Haiti

• Jul2013: gov't begins construction of reserve, 35.000 tonnes

"The construction of this strategic reserve reflects the desire of my
Government to promote national agricultural production, stabilize the
market price of commodities and combat food insecurity. Indeed, the fight
against hunger and extreme poverty constitutes the main pillars of
government action."

### Solving the model: Numerical methods

- Numerical solution:
  - Collocation method (*dpsolve* solver in *CompEcon*)
  - Chebyshev polynomials with 12 nodes for continuous state  $s_t$
  - One discrete variable, price, with values 1.0 and 1.85
- Once solved, run Monte Carlo simulations to assess performance of the policy

17 / 28

### Solving the model: Numerical methods

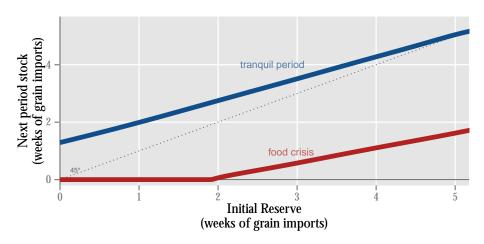
- Numerical solution:
  - Collocation method (*dpsolve* solver in *CompEcon*)
  - Chebyshev polynomials with 12 nodes for continuous state  $s_t$
  - One discrete variable, price, with values 1.0 and 1.85
- Once solved, run Monte Carlo simulations to assess performance of the policy

17 / 28

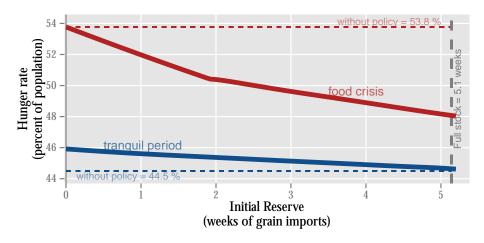
### Outline

Introduction

2 The model

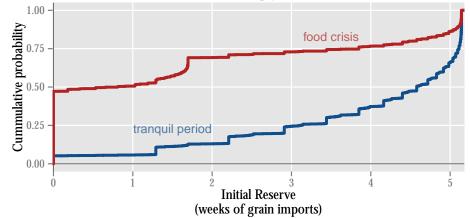

Results

4 Conclusions

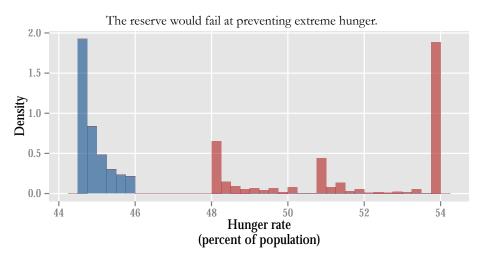

### The effects of crisis, without policy

| Variable              | $p_L$ | ÞН   | $\Delta$ % |
|-----------------------|-------|------|------------|
| Price of grain        | 1.0   | 1.85 | 85.0       |
| Price of food         | 1.0   | 1.25 | 25.5       |
| Food consumption      | 50.8  | 42.5 | -16.4      |
| Grain consumption     | 16.9  | 11.7 | -31.1      |
| Vegetable consumption | 33.9  | 31.8 | - 6.3      |
| Hunger rate (%)       | 44.5  | 53.8 | 20.8       |

### Storage policy

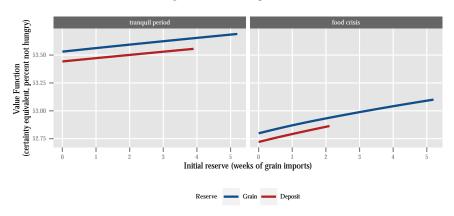



### Effects of storage policy on hunger



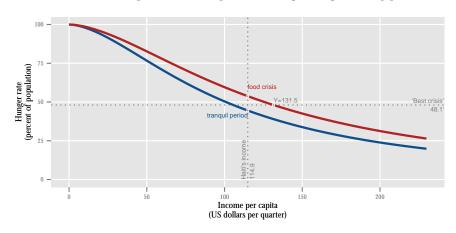

### Long-term distribution of grain reserve

In half of the crisis, the reserve would be empty!



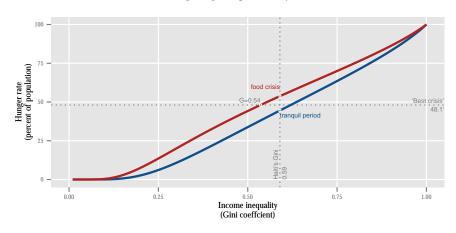

### Long-term distribution of hunger




### Cash vs. grain reserve?

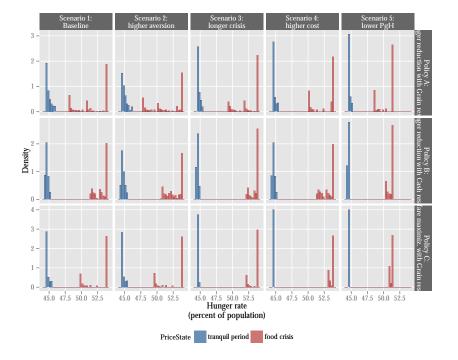
In this scenario, a grain reserve outperforms a cash reserve




### Food storage vs. fighting poverty

Resources used for grain reserve might be better spent at promoting growth.




### Price stabilization vs. safety net?

Income redistribution, targeting the poor, may have a better outcome.



## Summary statistics for other scenarios

|                   |                    |                         | ario 1:<br>eline)         |                         | ario 2:<br>: 3.0          |                         | ario 3:<br>= 4           |                         | ario 4:<br>0.05          |                         | ario 5:<br>= 1.60        |
|-------------------|--------------------|-------------------------|---------------------------|-------------------------|---------------------------|-------------------------|--------------------------|-------------------------|--------------------------|-------------------------|--------------------------|
| Variable          | Stat.              | ₽L                      | ⊅H                        | ₽L                      | ÞН                        | ₽L                      | ÞН                       | ₽L                      | ₽Н                       | ₽L                      | ÞН                       |
| Tax rate,         | min<br>mean<br>max | 1.02<br>3.23<br>10.83   | -30.45<br>-11.67<br>-0.00 | 1.22<br>3.75<br>11.91   | -31.94<br>-12.62<br>-0.00 | 0.72<br>2.02<br>7.35    | -23.90<br>-7.35<br>-0.00 | 0.89<br>2.07<br>6.70    | -20.72<br>-6.51<br>-0.00 | 0.39<br>1.41<br>5.07    | -17.23<br>-5.02<br>-0.00 |
| Initial<br>stock  | min<br>mean<br>max | 0.00<br>3.92<br>5.14    | 0.00<br>1.68<br>5.14      | 0.00<br>4.49<br>6.14    | 0.00<br>1.95<br>6.14      | 0.00<br>2.88<br>3.65    | 0.00<br>0.98<br>3.65     | 0.00<br>1.71<br>2.18    | 0.00<br>0.67<br>2.18     | 0.00<br>1.50<br>1.95    | 0.00<br>0.55<br>1.95     |
| End stock         | min<br>mean<br>max | 1.29<br>4.22<br>5.14    | 0.00<br>0.42<br>1.70      | 1.41<br>4.84<br>6.14    | 0.00<br>0.57<br>2.46      | 0.89<br>3.06<br>3.65    | 0.00<br>0.22<br>1.10     | 0.80<br>1.88<br>2.18    | 0.00<br>0.01<br>0.04     | 0.62<br>1.64<br>1.95    | 0.00<br>0.01<br>0.05     |
| Food<br>price     | min<br>mean<br>max | 1.00<br>1.01<br>1.04    | 1.09<br>1.19<br>1.25      | 1.00<br>1.01<br>1.04    | 1.08<br>1.19<br>1.25      | 1.00<br>1.01<br>1.02    | 1.13<br>1.22<br>1.25     | 1.00<br>1.01<br>1.02    | 1.15<br>1.22<br>1.25     | 1.00<br>1.00<br>1.02    | 1.10<br>1.16<br>1.18     |
| Hunger<br>rate, % | min<br>mean<br>max | 44.64<br>44.93<br>45.92 | 48.07<br>51.64<br>53.77   | 44.66<br>45.00<br>46.05 | 47.75<br>51.46<br>53.77   | 44.60<br>44.77<br>45.47 | 49.43<br>52.46<br>53.77  | 44.62<br>44.78<br>45.39 | 50.06<br>52.61<br>53.77  | 44.55<br>44.69<br>45.17 | 48.50<br>50.57<br>51.42  |



### Outline

Introduction

2 The model

Results

4 Conclusions

#### The optimal grain storage policy...

- would not fully stabilize food prices.
- would not prevent extreme hunger, yet it would reduce its frequency
- is very sensitive to key parameters (price process, storage costs
- might be outperformed by policies that attack poverty directly
- in many cases, no better than accumulating financial assets
- is more "active" when objective is avoiding extreme hunge:

#### The optimal grain storage policy...

- would not fully stabilize food prices.
- would not prevent extreme hunger, yet it would reduce its frequency.
- is very sensitive to key parameters (price process, storage costs
- might be outperformed by policies that attack poverty directly
- in many cases, no better than accumulating financial assets
- is more "active" when objective is avoiding extreme hunger

28 / 28

#### The optimal grain storage policy...

- would not fully stabilize food prices.
- would not prevent extreme hunger, yet it would reduce its frequency.
- is very sensitive to key parameters (price process, storage costs)
- might be outperformed by policies that attack poverty directly
- in many cases, no better than accumulating financial assets
- is more "active" when objective is avoiding extreme hunger

28 / 28

#### The optimal grain storage policy...

- would not fully stabilize food prices.
- would not prevent extreme hunger, yet it would reduce its frequency.
- is very sensitive to key parameters (price process, storage costs)
- might be outperformed by policies that attack poverty directly.

#### The optimal grain storage policy...

- would not fully stabilize food prices.
- would not prevent extreme hunger, yet it would reduce its frequency.
- is very sensitive to key parameters (price process, storage costs)
- might be outperformed by policies that attack poverty directly.
- in many cases, no better than accumulating financial assets.
- is more "active" when objective is avoiding extreme hunger

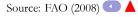
28 / 28

#### The optimal grain storage policy...

- would not fully stabilize food prices.
- would not prevent extreme hunger, yet it would reduce its frequency.
- is very sensitive to key parameters (price process, storage costs)
- might be outperformed by policies that attack poverty directly.
- in many cases, no better than accumulating financial assets.
- is more "active" when objective is avoiding extreme hunger.

#### Additional material

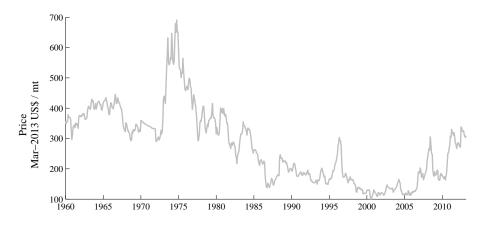
- Net buyers of staple foods
  - maize Historical real prices of maize
- wheat Historical real prices of wheat
  - Price Historical real prices of rice
- Soybeans Historical real prices of soybeans


### Net buyers of staple foods

#### Net buyers of staple foods

|                    | All households |       |      | Poor households |       |      |  |  |
|--------------------|----------------|-------|------|-----------------|-------|------|--|--|
|                    | Urban          | Rural | All  | Urban           | Rural | All  |  |  |
|                    | (Percentage)   |       |      |                 |       |      |  |  |
| Albania, 2005      | 99.1           | 67.6  | 82.9 | *               | *     | *    |  |  |
| Bangladesh, 2000   | 95.9           | 72.0  | 76.8 | 95.5            | 83.4  | 84.2 |  |  |
| Ghana, 1998        | 92.0           | 72.0  | 79.3 | *               | 69.1  | *    |  |  |
| Guatemala, 2000    | 97.5           | 86.4  | 91.2 | 98.3            | 82.2  | 83.1 |  |  |
| Malawi, 2004       | 96.6           | 92.8  | 93.3 | 99.0            | 94.8  | 95.0 |  |  |
| Nicaragua, 2001    | 97.9           | 78.5  | 90.4 | 93.8            | 73.0  | 79.0 |  |  |
| Pakistan, 2001     | 97.9           | 78.5  | 84.1 | 96.4            | 83.1  | 85.4 |  |  |
| Tajikistan, 2003   | 99.4           | 87.0  | 91.2 | 97.1            | 76.6  | 81.4 |  |  |
| Viet Nam, 1998     | 91.1           | 32.1  | 46.3 | 100.0           | 40.6  | 41.2 |  |  |
| Unweighted average | 96.4           | 74.1  | 81.7 | 97.2            | 87.9  | 78.5 |  |  |

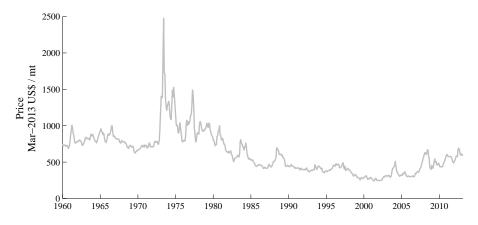
<sup>\*</sup> Insufficient data.


Source: FAO.





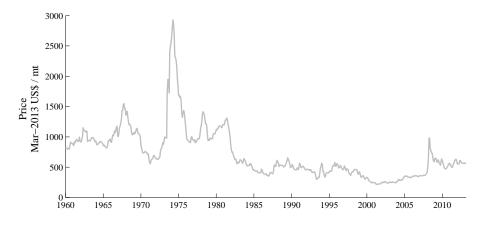
### Historical maize price


Maize (US), no. 2, yellow, f.o.b. US Gulf ports





### Historical wheat price


Wheat (US), no. 1, hard red winter, ordinary protein, export price delivered at the US Gulf port for prompt or 30 days shipment





### Historical rice price

Rice (Thailand), 5% broken, white rice (WR), milled, indicative price based on weekly surveys of export transactions, government standard, f.o.b. Bangkok





### Historical soybeans price

#### Soybeans (US), c.i.f. Rotterdam





#### References I

- Food and Agriculture Organization of the United Nations (2008). The State of Food Insecurity in the World 2008. High food prices and food security -- threats and opportunities. FAO. ISBN: 978-92-5-106049-0.
- Headey, Derek (2011). "Rethinking the global food crisis: The role of trade shocks". In: *Food Policy* 36.2, pp. 136–146.
  - Lagi, Marco, Karla Z. Bertrand, and Yaneer Bar-Yam (2011). "The Food Crises and Political Instability in North Africa and the Middle East". In: *ArXiv e-prints*, p. 15. arXiv: 1108.2455.