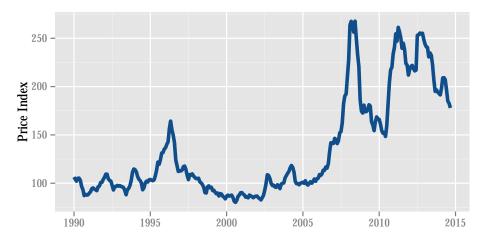
Sustainability of Regional Food Reserves When Default Is Possible

Randall Romero-Aguilar


Mario J. Miranda

2015 AAEA Annual Meeting San Francisco, CA, July 26-28, 2015

The Problem

Despite rising production, food prices are higher and increasingly volatile...

Source: FAO's cereal price index

The promises

- risk diversification
- economies of scale
- independent management, free of political influence
- provision of forum for collective agreements

The challenges

- implementation procedures
- financial sustainability
- implications for free trade
- commitment of member countries

- Two countries
- No trade
- One grain
- Countries share a fraction of their grain
- Objective: maximize lifetime utility of representative agent
- Dynamic game with limited commitment
- Nash-Markov sub-game perfect equilibria
- Solved numerically, develop new computational tools algorithm

Availability $\tilde{q}_i + (1 - \phi) s_{i,-1} \equiv a_i = c_i + s_i$ production $s_i = c_i + s_i$ production

Bellman equation

$$V(a) = \max_{s \in [0,a]} \left\{ u(a-s) + \delta EV\left((1-\phi)s + \tilde{q}'\right) \right\}$$

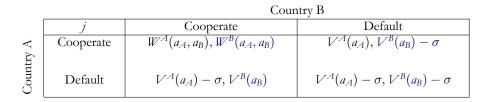
A joint reserve

Redistributing availabilities: country *B* transfers $l = \psi(a_B - a_A)$ units of grain to country *A*

Insurance contract

$$\hat{a}_A = (1 - \psi)a_A + \psi a_B$$

 $\hat{a}_B = \psi a_A + (1 - \psi)a_B$

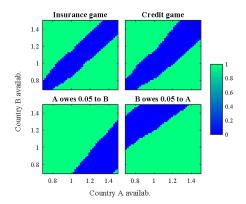

Credit contract

$$\hat{a}_{A} = (1 - \psi)a_{A} + \psi a_{B} - l_{-1}$$

$$\hat{a}_{B} = \psi a_{A} + (1 - \psi)a_{B} + l_{-1}$$

If any country defaults, they remain in autarky forever

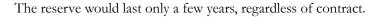
Default $\hat{a}_A = a_A$ $\hat{a}_B = a_B$

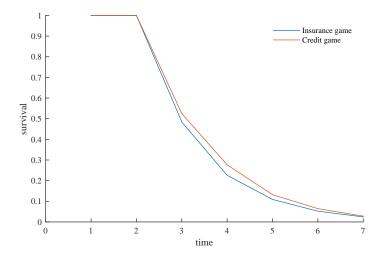

where

$$W(a_A, a_B, l)_{\text{value of cooperating}} = \max_{s \in [0, \hat{a}]} \left\{ u(\hat{a} - s) + \delta EU(a'_A, a'_B, l)_{\text{game payoff}} \right\}$$

Because bigger liabilities drive countries to default, reserve is more sustainable when

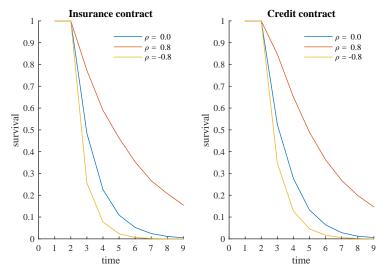
- production shocks are positively correlated plot
- the shared fraction of availabilities is smaller plot
- the reserve is operated as an insurance union rather than a credit union plot

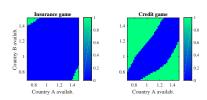

- Default occurs when the required transfer exceeds a critical value l*
- In insurance contract, only the country with higher availability has incentive to default.
- In credit contract, a debtor also has incentive to default if own availabily is low.

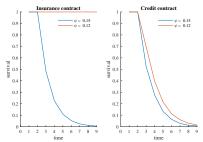


Appendix

...only if there is time


Time to default




Production correlation and time to default

The reserve would be more stable for negatively-correlated production shocks.

When sharing less grain, insurance contract is very stable.

Numerical solution builds on CompEcon's gamesolve:

- to allow discrete states
- to allow discrete actions

Approximation algorithm

- Discretize the production shocks
- 1 Compute the value of autarky V
- **2** Guess W^A and W^B , using Chebyshev polynomials
- **3** Get the payoffs U^A and U^B by solving the discrete game
- 4 Update W^A and W^B
- 5 Iterate steps 3 and 4 until convergence

Parameter	Description	Player 1	Player 2
ho	relative risk aversion	2.00	2.00
φ	marginal cost of storage	0.05	0.05
δ	government discount factor	0.95	0.95
σ	stigma	0.05	0.05
α	beta distribution parameter	1.25	1.25
λ	max. production shock	0.30	0.30
ψ	shared availability	0.15	
ρ	production correlation	0.00	