Filtering time series
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Based on:

. Cogley and Nason (1995) Effects of the Hodrick-Prescott filter on trend and
difference stationary time series.

. Canova (1998) Detrending and business cycle facts.



* The stepsin their methodology*:
1.

5.
6.

The Real Business Cycle Model

Kydland and Prescott use neoclassical growth model to study

business cycle fluctuations:

Start with the neoclassical growth
model.

Modify the national accounts to be
consistent with the theory.

Restrict the model to be consistent with
the growth facts.

Introduce a Markovian shock process.
Make a linear-quadratic approximation.

Compute the competitive equilibrium

process.
Simulate the model economy.

Examine the key business cycle statistics
and draw scientific inferences.

Check for consistency with observations
on individual households and firms.

* Prescott (2006). Nobel Lecture: The Transformation of Macroeconomic Policy and Research. The Journal of Political Economy, Vol. 114,
No.2, pp.203-235




Canova (1998)

Detrending and business cycle facts.



Problem: How to separate trend from cycle?

U.S. Real GDP and Consumption, 194791 to 201094
(index 2005=100)
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Business Cycle

There are so many of them! Which filter should work better?



Canova (1998) main results

e The practice of solely employing the HP1600 filter in
compiling business cycle statistics is problematic.

e The idea that there is a single set of facts which is more or
less robust to the exact definition of business cycle is
misleading.

e The empirical characterization of the B.C. obtained with
multivariate detrending methods is different from the one
obtained with univariate procedures.

e The practice of building theoretical models whose numerical
versions quantitatively match one set of regularities
obtained with a particular concept of cyclical fluctuation
warrants a careful reconsideration.




Two problems connected with detrending

e Business cycles are deviations from the trend.

e But then, what is a trend?

e Are trends deterministic or stochastic processes?

e |f stochastic, are they correlated to the cyclical component?

What are

business
cycles?

S e Concern on “measurement without theory”.

e Dynamic economic theory does not indicate the type of
economic trend that series may display nor the relationship
between trend and cycle.

e Then, what is the “right” specification?

VS.

Economic
approach




Alternative detrending methods

LT & SEGM e Polynomial functions of time

FOD e First order difference

e Beveridge and Nelson’s procedure
e Unobserved components
SiEenl 0 BE0V. | e Frequency domain methods
MINDEX e One-dimension index model
MLT e A model of common deterministic trends

COIN e A model of common stochastic trends

Slels0[0) 4 (B2 8 o The Hodrick and Prescott’s filter
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Polynomial function of time

LT & SEGM

* Trend and cycle uncorrelated.
* Trend is deterministic (polynomial of time).

* Trend estimated by OLS, residual gives cycle.

Linear trend with known structural break
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First order differences

FOD

 The trend is a random walk with no drift.
* The cycle is stationary.
* Trend and cycle uncorrelated.

 Series has a unit root.

First order differences
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Beveridge and Nelson’s procedure

BN

Cycle is the stationary component of series.
Trend is the non-stationary component.
Trend and cycle perfectly correlated.

Components derived from ARIMA process.

Beveridge and Nelson




; Unobserved components model
ucC

* Trend follows a random walk with drift.
e Cycle is a stationary finite order AR process.
* Trend and cycle might be correlated.

Unobservedcomponents
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Frequency domain methods

FREQ

* Trend and cycle are independent.
* Trend has power in low frequency of spectrum
* Cycle has power in high frequency of spectrum

Spectrum

Power

Trend ~ low

Frequency



One-dimensional index model

MINDEX

 Multivariate method, while each series is
trending, some linear combination of them does
not have trend.
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" Common deterministic trends

* Based on neoclassical model of capital accumulation,
with deterministic labor augmenting technical

change.

* All endogenous variables have a common
deterministic trend.

Commondeterministic trends
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" Common stochastic trends

MLT

* Based on neoclassical model of capital accumulation,
with non-stationary technological shock

* All endogenous variables have a common stochastic
trend.

Common stochastic trends

X, =Y, A tys t+d ,+y e
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* Trend is a representation of the preferences of the
researcher and depends on question being
investigated.

e Assumes that trend is smooth.

Hodrickand Prescott ' s
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Cyclical components




Standard deviations

(absolute for GNP, all others relative to GNP)
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Cross-correlations
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Impulse Response Function

(Summary statistics)
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Cogley and Nason (1995)

Effects of the Hodrick-Prescott filter
on trend and difference stationary
time series.



Some useful concepts

Stationary time o
series {Yt}

_suchthat E Y)Y=m and VY s

Time domain Y = .u @
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Frequency domain
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Some useful concepts (2)

Stationary time series

{S}. . E$)=m oVy 3

Trend-stationary (TS) o .
time series {Xt}t: -4 Xt = a # bSt
Difference-stationary e
(DS) time series {Xt}t: 3 Xt _Xt-l -St
Lag polynomial p —
g poly (apL +.. +,la 04)Xq ... X ,+ ¥

Euler formula

eV = cosw #sin

Then: W

€"+e' W=2cos w @e" & “ 2in

Spectrum of a filter X, :A(L)yt YSX( \/)/ A(eiW)A(e4 v)sg/( )




Spectral analysis: some examples

White noise AR(1) process

More examples in Matlab



Cogley and Nason main result

When measuring the business
component of a time series, is
it a good idea to use the
Hodrick-Prescott filter?

YES, if original series is NO, if original series is
Trend Stationary Difference-Stationary




The Hodrick-Prescott filter
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The Hodrick-Prescott filter (2)

Cyclical component of the HP filter
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Spectrum of the HP filter
Notice that: A(L-l):(LO.S L -0.5)4 (1; 05 | _0.5)4 A L:)

- Fp (L") =Fp(L)

Furthermore:
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Then the spectrum of the filtered series is related to the
spectrum of the original series by:
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Non-stationary periodic decomposition?

In practice, HP filter is applied to non-stationary time series
(after all, it was designed to separate the trend from the
cycle!)

However, there is not a spectral representation for non-
stationary processes!

To study the effects of filtering trending series, think of the
filter as a procedure that performs two operations:
1. Render the series stationary by an appropriate transformation.
2. Work on the stationary component.

Then it is possible to analyze the effect of the filter on the
cycle component by studying the second operation.

Here we explored the effect of filtering on:
1. Trend-stationary processes.
2. Difference-stationary processes.



Filtering a TS process

y, = a H bz
Ce(a- L)

e (L) 5 1+ IA(L)

V Applying the HP
filtertoa TS
process is
equivalent to
filtering only its
stationary (cyclical)
component.



Filtering a DS process
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V Applying the HP filter to a DS process is NOT equivalent
to filtering only its stationary (cyclical) component.



Square gain of the filter

DS process
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Effects of HP filter on covariance

ex, gefy, 1, &g e,
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Effects of HP filter on spectra

Spectrum var 1

Quad-spectrum 1-2
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Effects of HP on US data: covariance
GDP, Consumption, and Investment, 1947-2010

- HP filtered
HP filtering greatly distorts the shape of the covariance function. — ongmzle
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= HP filtered
BN Original

Effects of HP on US data: spectra
GDP, Consumption, and Investment, 1947-2010
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GDP growth: actual vs. simulated

(U.S. 1954-1991 vs Christiano-Eichenbaum (1992) model

Pre-smoothing ACF Pre-smoothing spectra
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Fig 4. Autocorrelations and power spectra, before and after filtering (DS model).

Model does not
generate business cycle
periodicity.

In this model, the source
of business cycle
periodicity in the HP
filtered data is the HP

filter itself!!

Actual data
Model simulated




Comovement: actual vs. simulated

(U.S. 1954-1991 vs Christiano-Eichenbaum (1992) model

* An RBC model can exhibit business cycle comovements in HP filtered data even
when pre-filter comovements are almost entirely contemporaneous.

Before HP After HP Before HP After HP

CCF CE.CY

COF dedy

Cr-specira co.cy

— Co-specia deady

:

Co-spectra diydy Co-spectra cigcy

.50 - 1
125 N
LD FLINA]
5 7.5
50 34
L 15

! i . i

00 _
- 25 2.5
- e -5 ; S 5.0 ' —
-3 0 9 -9 o 5 B N 8 4 2.7

Actual data
Model simulated




Final remarks

If you apply the HodrickPrescott

filter to a DifferenceStationary
process, you may obtain

completely biased results when
evaluating a RBC model.

*

|

There are many filters to choose
from when separating the trend
from the cycle in a time series.

Unf ortunately,
about the business cycle are not
robust to the choice of filter.



