
Filtering time series 
Randall Romero-Aguilar, February 28th, 2011 

Based on: 

• Cogley and Nason (1995) Effects of the Hodrick-Prescott filter on trend and 
difference stationary time series. 

• Canova (1998) Detrending and business cycle facts. 



The Real Business Cycle Model 

• Kydland and Prescott use neoclassical growth model to study 
business cycle fluctuations: 

• The steps in their methodology*: 

1. Start with the neoclassical growth 
model. 

2. Modify the national accounts to be 
consistent with the theory. 

3. Restrict the model to be consistent with 
the growth facts. 

4. Introduce a Markovian shock process. 

5. Make a linear-quadratic approximation. 

6. Compute the competitive equilibrium 

process. 

7. Simulate the model economy. 

8. Examine the key business cycle statistics 
and draw scientific inferences. 

9. Check for consistency with observations 
on individual households and firms. 

* Prescott (2006). Nobel Lecture: The Transformation of Macroeconomic Policy and Research. The Journal of Political Economy, Vol. 114, 
No.2, pp.203-235 
  



Canova (1998) 

Detrending and business cycle facts. 



Problem: How to separate trend from cycle? 
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U.S.  Real GDP and Consumption, 1947q1 to 2010q4  
(index 2005=100) 

GDP

Consumption

Source:  Own computations, using data on BEA Table 1.1.3 



Solution:  Use a filter! 
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There are so many of them! Which filter should work better? 



Canova (1998) main results 

• The practice of solely employing the HP1600 filter in 
compiling business cycle statistics is problematic. 1 

• The idea that there is a single set of facts which is more or 
less robust to the exact definition of business cycle is 
misleading. 

2 

• The empirical characterization of the B.C. obtained with 
multivariate detrending methods is different from the one 
obtained with univariate procedures. 

3 
• The practice of building theoretical models whose numerical 

versions quantitatively match one set of regularities 
obtained with a particular concept of cyclical fluctuation 
warrants a careful reconsideration. 

4 



Two problems connected with detrending 

• Business cycles are deviations from the trend. 

• But then, what is a trend? 

• Are trends deterministic or stochastic processes? 

• If stochastic, are they correlated to the cyclical component? 

What are 
business 
cycles? 

• Concern on “measurement without theory”. 

• Dynamic economic theory does not indicate the type of 
economic trend that series may display nor the relationship 
between trend and cycle. 

• Then, what is the “right” specification? 
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Alternative detrending methods 
• Polynomial functions of time LT  &  SEGM 

• First order difference FOD 

• Beveridge and Nelson’s procedure BN 

• Unobserved  components UC 

• Frequency domain methods FREQ1  &  FREQ2 

• One-dimension index model MINDEX 

• A model of common deterministic trends MLT 

• A model of common stochastic trends COIN 

• The Hodrick and Prescott’s filter HP 1600  &  HP4 



Polynomial function of time 

• Trend and cycle uncorrelated. 

• Trend is deterministic (polynomial of time). 

• Trend estimated by OLS, residual gives cycle. 
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First order differences 

• The trend is a random walk with no drift. 

• The cycle is stationary. 

• Trend and cycle  uncorrelated. 

• Series has a unit root. 
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Beveridge and Nelson’s procedure 

• Cycle is the stationary component of series. 

• Trend is the non-stationary component. 

• Trend and cycle perfectly correlated. 

• Components derived from ARIMA process. 
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Unobserved components model 

• Trend follows a random walk with drift. 

• Cycle is a stationary finite order AR process. 

• Trend and cycle might be correlated. 

Unobserved components 
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Spectrum 

Frequency domain methods 

• Trend and cycle are independent. 

• Trend has power in low frequency of spectrum 

• Cycle has power in high frequency of spectrum 
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Spectrum of zt 

One-dimensional index model 

• Multivariate method, while each series is 
trending, some linear combination of them does 
not have trend. 
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Common deterministic trends 

• Based on neoclassical model of capital accumulation, 
with deterministic labor augmenting technical 
change. 

• All endogenous variables have a common 
deterministic trend. 

Common deterministic trends 
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Common stochastic trends 

• Based on neoclassical model of capital accumulation, 
with non-stationary technological shock 

• All endogenous variables have a common stochastic 
trend. 

Common   stochastic  trends 
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The Hodrick and Prescott’s filter 

• Trend is a representation of the preferences of the 
researcher and depends on question being 
investigated. 

• Assumes that trend is smooth. 

Hodrick and Prescott’s  filter 
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Cyclical components 



Standard deviations 
(absolute for GNP, all others relative to GNP) 

Filter GNP Consumption Investment Hours Real wage Productivity Capital

HP1600 1.76 0.49 2.82 1.06 0.70 0.49 0.61

HP4 0.55 0.48 2.70 0.89 0.65 0.69 0.14

FOD 1.03 0.51 2.82 0.91 0.98 0.67 0.63

BN 0.43 0.75 3.80 1.64 2.18 1.14 2.64

UC 0.38 0.34 6.72 4.14 2.24 4.09 1.22

LT 4.03 0.69 2.16 0.69 1.71 1.00 1.56

SEGM 2.65 0.52 3.09 1.01 1.10 0.54 0.97

FREQ1 1.78 0.46 3.10 1.20 1.07 0.66 1.41

FREQ2 1.14 0.44 3.00 1.16 1.11 0.69 1.26

MLT 6.01 0.67 2.36 0.46 1.21 1.00 1.05

MINDEX 3.47 0.98 2.65 1.14 1.27 0.72 1.85

COIN 4.15 0.71 3.96 0.75 1.68 1.09 1.30



Cross-correlations 
(With respect to GNP, lags -1, 0 and 1) 

-1 0 1 -1 0 1 -1 0 1 -1 0 1

HP1600 0.75 0.75 0.62 0.76 0.91 0.84 0.67 0.88 0.90 0.81 0.81 0.63

HP4 0.16 0.31 0.01 0.07 0.65 0.28 0.11 0.73 0.44 0.12 0.49 -0.30

FOD 0.35 0.46 0.21 0.25 0.71 0.39 0.28 0.75 0.54 0.34 0.69 0.42

BN 0.23 0.42 0.38 -0.08 0.45 0.38 0.27 0.72 0.30 0.05 0.52 0.45

UC 0.79 0.74 0.61 0.82 0.45 0.73 0.01 0.17 0.28 0.80 0.85 0.79

LT 0.90 0.91 0.89 0.73 0.77 0.76 0.25 0.34 0.37 0.89 0.92 0.90

SEGM 0.76 0.81 0.76 0.78 0.86 0.79 0.71 0.85 0.86 0.79 0.88 0.84

FREQ1 0.75 0.73 0.57 0.73 0.86 0.80 0.63 0.83 0.85 0.73 0.84 0.75

FREQ2 0.68 0.69 0.52 0.58 0.85 0.85 0.48 0.80 0.87 0.59 0.81 0.79

MLT 0.93 0.96 0.93 -0.26 -0.26 -0.26 0.17 0.22 0.23 0.79 0.82 0.81

MINDEX 0.79 0.84 0.85 0.81 0.84 0.80 0.71 0.77 0.78 0.64 0.67 0.65

COIN 0.82 0.83 0.82 0.28 0.30 0.31 0.16 0.24 0.27 0.89 0.91 0.90

Consumption Investment Hours Real wages



Cycle 

length

(quarters)

HP1600 20 2 0.28 3 1.93 3 0.76 1 0.46 1 2.00 6 0.30

HP4 8 1 0.17 1 1.50 1 0.58 1 0.37 1 1.70 2 0.05

FOD 6 1 0.25 1 1.50 1 0.57 1 0.53 1 1.82 4 0.11

BN 8 1 0.30 1 2.10 1 1.24 1 1.42 1 0.84 5 2.18

UC 21 1 0.23 1 6.02 5 2.38 4 1.18 1 0.98 6 0.54

LT 48 3 0.26 3 1.80 3 0.79 3 0.56 1 2.03 44 0.54

SEGM 19 1 0.24 4 1.86 3 0.77 1 0.52 1 2.02 6 0.36

FREQ1 17 4 0.30 3 1.98 3 0.82 3 0.60 1 2.10 4 0.31

FREQ2 12 4 1.12 4 10.20 4 3.25 4 2.08 4 2.06 25 1.53

MLT 48 2 0.26 2 1.84 3 0.79 3 0.52 1 1.83 7 0.28

MINDEX 39 2 0.28 4 1.91 2 0.81 3 0.55 1 1.67 44 0.36

COIN 24 3 1.32 4 6.23 4 3.18 6 1.78 1 0.74 10 0.42

Size and location of peak response

Consumption Investment Hours Real Wage Productivity Capital

Impulse Response Function 
(Summary statistics) 



Cogley and Nason (1995)  

Effects of the Hodrick-Prescott filter 
on trend and difference stationary 

time series. 

 



Some useful concepts 

Stationary time 
series 

Time domain 
representation 

Frequency domain 
representation 

Autocovariance 

Population 
spectrum 

Its inverse: 
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Some useful concepts  (2) 
Stationary time series 

Trend-stationary  (TS) 
time series  

Difference-stationary 
(DS) time series 

Lag polynomial 

Euler formula 

Then: 

Spectrum of a filter 
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Spectral analysis: some examples 

White noise AR(1) process 
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More examples in Matlab 



Cogley and Nason main result 

When measuring the business 
component of a time series, is 

it a good idea to use the 
Hodrick-Prescott filter? 

YES, if original series is 
Trend Stationary 

NO, if original series is 
Difference-Stationary 



The Hodrick-Prescott filter 
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The Hodrick-Prescott filter (2) 
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Cyclical component of the HP filter 
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Spectrum of the HP filter 
Notice that:        
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Furthermore: 
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Then the spectrum of the filtered series is related to the 
spectrum of the original series by: 
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Non-stationary periodic decomposition? 

• In practice, HP filter is applied to non-stationary time series 
(after all, it was designed to separate the trend from the 
cycle!) 

• However, there is not a spectral representation for non-
stationary processes! 

• To study the effects of filtering trending series, think of the 
filter as a procedure that performs two operations: 
1. Render the series stationary by an appropriate transformation. 

2. Work on the stationary component. 

• Then it is possible to analyze the effect of the filter on the 
cycle component by studying the second operation. 

• Here we explored the effect of filtering on: 
1. Trend-stationary processes. 

2. Difference-stationary processes. 

 

 



Filtering a TS process 

Applying the HP 
filter to a TS 
process is 
equivalent to 
filtering only its 
stationary (cyclical) 
component. 
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Filtering a DS process 

 Applying the HP filter to a DS process is NOT equivalent 
to filtering only its stationary (cyclical) component. 
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DS process TS process 

Square gain of the filter 
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More examples in Matlab 

Squared gain 

Maxima 
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Effects of HP filter on covariance 

• Consider a VAR(1) process 1,tt t 111 12

2,tt t 121 22
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Effects of HP filter on spectra 
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Effects of HP on US data: covariance 
GDP, Consumption, and Investment, 1947-2010 

• HP filtering greatly distorts the shape of the covariance function. 
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Effects of HP on US data: spectra 
GDP, Consumption, and Investment, 1947-2010 
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GDP growth: actual vs. simulated 
(U.S. 1954-1991 vs Christiano-Eichenbaum (1992) model 

• Model does not 

generate business cycle 

periodicity. 

• In this model, the source 

of business cycle 

periodicity in the HP 

filtered data is the HP 

filter itself!! 

Actual data 

Model simulated 



• An RBC model can exhibit business cycle comovements in HP filtered data even 
when pre-filter comovements are almost entirely contemporaneous. 

Comovement: actual vs. simulated 
(U.S. 1954-1991 vs Christiano-Eichenbaum (1992) model 

Actual data 

Model simulated 

Before HP After HP Before HP After HP 



Final  remarks 

If you apply the Hodrick-Prescott 
filter to a Difference-Stationary 

process, you may obtain 
completely biased results when 

evaluating a RBC model. 

There are many filters to choose 
from when separating the trend 
from the cycle in a time series. 

Unfortunately, “stylized facts” 
about the business cycle are not 

robust to the choice of filter. 


