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The use of programming languages has become increasingly necessary in many of the
tasks that we economist do, either because the theoretic models we develop lack analytic
solutions, or because the new econometric estimator we wish to use is not yet available in
a program with a graphical user interface (GUI, where we could just click with a mouse),
or just because it is not efficient to analyze huge datasets with spreadsheets.

Those who wish to exploit the advantages of programming to do these tasks must
first decide which of many programming languages to learn. For instance, to a greater or
lesser extend the languages R, Python, Julia, Fortran, Gauss, and MATLAB are all used
by economists. MATLAB has been especially popular in this field, and there are many
tools that have been developed to be run in this program, among them DYNARE and
IRIS (to solve and estimate DSGE models), CompEcon (for computational economics),
and Econometrics (for spacial econometrics).

Despite the fact that Python is not yet as popular as MATLAB among economists,
its popularity has certainly skyrocketed in recent years. For example, the following books
use Python to do typical economists tasks:

• QuantEcon by Thomas Sargent and John Stachurski.
• Economic Dynamics: Theory and Computation, by Stachurski.
• Python for Econometrics, by Kevin Sheppard.

Python is a versatile and easy-to-learn language —in fact it is used extensively in
America’s best universities to teach introductory programming courses. Its syntax is
very clear, which makes developing and maintaining code easy. Because it is one of the
most popular languages among computer programmers, there are abundant resources to
learn it (books, Internet pages). It is an excellent tool to perform scientific calculation

1Consultant Economist at Secretaría Ejecutiva del Consejo Monetario Centroamericano (SECMCA)
and economics professor at University of Costa Rica (UCR). Doctor in Economics by The Ohio State
University (OSU) and Master in Econometrics by The London School of Economics (LSE). Opinions
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tasks (thanks to packages such as Numpy and Scipy), data management (pandas), visu-
alization (Matplotlib) and econometric modeling (Statsmodels).

Another advantage of using Python is that, unlike proprietary programs, Python and
many of these complementary packages are completely free. The best way to get Python
is through Anaconda, a free distribution that includes more than 300 very useful pack-
ages in science, mathematics, engineering, and data analysis. Besides Python, Anaconda
includes tools such as IPython (to run Python interactively), Jupyter (an editor that
allows combining text, code and results in a single file, excellent for documenting your
work), Spyder (a GUI for code editing, similar to that of MATLAB) and Conda (allows
to install and update packages).

If you want to start working with Python, you should consider two issues. First,
there are currently two versions of Python that are not entirely compatible with each
other, the 2 (whose last update is 2.7) and the 3 (currently updated to 3.6). Personally, I
recommend working with version 3.6 because it has significant improvements over version
2.7, and most of the packages needed to work in typical economists tasks have already
been ported to 3.6.

Second, although Spyder facilitates code editing, more advanced users may prefer
PyCharm, an excellent Python editor whose “Community” version can be used for free.
This editor makes it much easier to edit programs, because of features such as auto-
complete (especially useful when we have not yet memorized Python functions), syntax
highlighting (shows keywords in different color, to make it easier to understand the code’s
logic), and debugger (to partially run a program when it is necessary to find a bug).

The purpose of this note is to illustrate some of the common tasks that economists
can do using Python. First, we use numerical techniques to solve two Cournot compe-
tition models presented by Miranda and Fackler (2002) using the ”CompEcon-python”
package 2, which is freely available at Github3. Second, it illustrates how to automate
the collection of Internet data and its presentation in tables and graphs. Third, some
examples of econometric models estimated with Python are shown.

For each of the problems, I provide Python code to solve it, along with brief explana-
tions of how this code works. However, this note is not intended to teach programming
in Python because, as mentioned above, there are already many high quality teaching
resources for this purpose, including the site of Google developers, the site learnpython,

2This package was developed by the author and is based precisely on the CompEcon toolbox for
MATLAB from Miranda and Fackler (2002).

3Readers interested in the topic of computational economics will find more of these examples in
Romero-Aguilar (2016).
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and several online courses at edx. Likewise, in the first two examples, the numerical
methods implemented in Python are presented concisely, but readers interested in this
topic are advised to consult the textbooks of Miranda and Fackler (2002), Judd (1998),
and Press, Teukolsky, and Brian P. Flannery (2007).
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Example 1: A 2-firms Cournot model
Assume the market is controlled by two firms that compete with each other. For this
duopoly, the inverse of the demand function is given by

P (q) = q−α

and both firms face quadratic costs

C1 =
1
2
β1q

2
1

C2 =
1
2
β2q

2
2

Firms profits are

π1 (q1, q2) = P (q1 + q2) q1 − C1 (q1)

π2 (q1, q2) = P (q1 + q2) q2 − C2 (q2)

In a Cournot equilibrium, each firm maximizes its profits taking as given the other
firm’s output. Thus, it must follow that

∂π1 (q1, q2)

∂q1
= P (q1 + q2) + P ′ (q1 + q2) q1 − C ′

1 (q1) = 0

∂π2 (q1, q2)

∂q2
= P (q1 + q2) + P ′ (q1 + q2) q2 − C ′

2 (q2) = 0

Therefore, equilibrium output levels for this market are given by the solution to this
nonlinear equation system

f (q1, q2) =

[
(q1 + q2)

−α − αq1 (q1 + q2)
−α−1 − β1q1

(q1 + q2)
−α − αq2 (q1 + q2)

−α−1 − β2q2

]
=

[
0
0

]
(1)

Newton’s method
To find the root of the function defined in (1) we will use Newton’s method. In general,
this method is applied to the function f : ℜn → ℜn to find some4 value x∗ such that
f(x∗) = 0. To that end, we start with a value x0 ∈ ℜn and make the recursion

xi+1 = xi − J−1(xi)f(xi) (2)

where J(xi) corresponds to the Jacobian of f evaluated at x0. In theory, following this
recursion xi converges to x∗ as long as the f function is continuously differentiable and
the initial value x0 is “sufficiently close” to the x∗ root.

4Notice that, depending on the function, there could be more than one solution, or no solution at all.
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Solving the model with Python
First, we begin a Python session and import compecon

import numpy as np
import matplotlib.pyplot as plt

from compecon import NLP, gridmake
from compecon.demos import demo

To solve this model computationally, we need to assign values to the parameters, so
we set α = 0.625, β1 = 0.6 and β2 = 0.8.

alpha = 0.625
beta = np.array([0.6, 0.8])

The unknowns in our problem are the firms’ output levels, q1 and q2. We define the
market function to tell us total output and resulting price, given the levels of q1 y q2.
Notice that both quantities are passed to this function in the q vector

def market(q):
quantity = q.sum()
price = quantity ** (-alpha)
return price, quantity

Then, we define the cournot function, returning a two-element tuple: the objective
function and its Jacobian matrix, both evaluated in a pair of quantities contained by
the q vector. To make the code easier, notice that the (1) function can be written more
succinctly as

f (q1, q2) =

[
P + (P ′ − c1) q1
P + (P ′ − c2) q2

]
=

[
0
0

]
and its Jacobian matrix is

J (q1, q2) =

[
2P ′ + P ′′q1 − c1 P ′ + P ′′q1

P ′ − P ′′q2 2P ′ + P ′′q2 − c2

]
If we define total output as Q = q1 + q2, notice also that

P ′ = −α
P

Q
y que P ′′ = −(α + 1)

P ′

Q

def cournot(q):
P, Q = market(q)
P1 = -alpha * P/Q
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P2 = (-alpha - 1) * P1 / Q
fval = P + (P1 - beta) * q
fjac = np.diag(2*P1 + P2*q - beta) + np.fliplr(np.diag(P1 + P2*q))
return fval, fjac

Next, we compute the equilibrium using Newton’s method (equation (2)) to find the
root of the cournot function. We set q0 =

[
0.2 0.2

]′ as our initial value and iterate
until the norm of the change between two successive values of the recursion is less than
10−10.

q = np.array([0.2, 0.2])

for it in range(40):
f, J = cournot(q)
step = -np.linalg.solve(J, f)
q += step
if np.linalg.norm(step) < 1.e-10: break

price, quantity = market(q)
print(f'\nCompany 1 produces {q[0]:.4f} units, while' +
f' company 2 produces {q[1]:.4f} units.')

print(f'Total production is {quantity:.4f} and price is {price:.4f}')

After just five iterations, Newton’s method converges to the solution, which Python
prints to screen:

Company 1 produces 0.8396 units, while company 2 produces 0.6888 units. Total
production is 1.5284 and price is 0.7671

We see that the code has found the equilibrium to this market.

The compecon package provides the NLP (non-linear problem) class, useful to solve
last problem without the need of coding Newton’s algorithm. To use it, we create an
instance of NLP from the cournot function, and simply call the newton method, using q0
as initial value.

q0 = np.array([0.2, 0.2])
cournot_problem = NLP(cournot)
q = cournot_problem.newton(q0)

price, quantity = market(q)
print(f'\nCompany 1 produces {q[0]:.4f} units, while' +
f' company 2 produces {q[1]:.4f} units.')

print(f'Total production is {quantity:.4f} and price is {price:.4f}')
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After completing this code block, Python prints the following to screen:

Company 1 produces 0.8396 units, while company 2 produces 0.6888 units. Total
production is 1.5284 and price is 0.7671

As expected, we got the same result.

Figure 1 illustrates the problem we just solved, where the axes represent the output
levels of each firm. The quasi-vertical white line represents the profit-maximizing output
level for firm 1, taking the output of firm 2 as given. Similarly, the quasi-horizontal
line represents the profit maximizing output level for firm 2, given firm 1 output. The
solution to the problem corresponds to the intersection of these two lines. See also the
path to convergence (blue line) from the initial q0 =

[
0.2 0.2

]′ point to the solution.

n = 100
q1 = np.linspace(0.1, 1.5, n)
q2 = np.linspace(0.1, 1.5, n)
z = np.array([cournot(q)[0] for q in gridmake(q1, q2).T]).T

steps_options = {'marker': 'o',
'color': (0.2, 0.2, .81),
'linewidth': 2.5,
'markersize': 9,
'markerfacecolor': 'white',
'markeredgecolor': 'red'}

contour_options = {'levels': [0.0],
'colors': 'white',
'linewidths': 2.0}

Q1, Q2 = np.meshgrid(q1, q2)
Z0 = np.reshape(z[0], (n,n), order='F')
Z1 = np.reshape(z[1], (n,n), order='F')

methods = ['newton', 'broyden']
cournot_problem.opts['maxit', 'maxsteps', 'all_x'] = 10, 0, True

qmin, qmax = 0.1, 1.3
x = cournot_problem.zero(method='newton')
demo.figure("Convergence of Newton's method", '$q_1$', '$q_2$',
[qmin, qmax], [qmin, qmax])

7



plt.contour(Q1, Q2, Z0, **contour_options)
plt.contour(Q1, Q2, Z1, **contour_options)

plt.plot(*cournot_problem.x_sequence, **steps_options)

demo.text(0.85, qmax, '$\pi_1 = 0$', 'left', 'top')
demo.text(qmax, 0.55, '$\pi_2 = 0$', 'right', 'center')

0.2 0.4 0.6 0.8 1.0 1.2
q1

0.2

0.4

0.6

0.8

1.0

1.2

q 2

1 = 0

2 = 0

Convergence of Newton's method

Figure 1: Convergence towards the system root
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Example 2: Solving an Cournot oligopoly model by
collocation
To illustrate the implementation of the collocation method for implicit function problems,
consider the case of a Cournot oligopoly. In the standard microeconomic model of the
firm, the firm maximizes its profits by matching marginal revenue to marginal cost (MC).
An oligopolistic firm, recognizing that its actions affect the price, knows that its marginal
revenue is p+ q dp

dq
, where p is the price, q the quantity produced, and dp

dq
is the marginal

impact of the product on the market price. Cournot’s assumption is that the company
acts as if none of its production changes would provoke a reaction from its competitors.
This implies that:

dp

dq
=

1

D′(p)
(3)

where D(p) is the market demand curve.

Suppose we want to derive the firm’s effective supply function, which specifies the
amount q = S(p) that it will supply at each price. The effective supply function of the
firm is characterized by the functional equation

p+
S(p)

D′(p)
−MC(S(p)) = 0 (4)

for every price p > 0. In simple cases, this function can be found explicitly. However, in
more complicated cases, there is no explicit solution. Suppose for example that demand
and marginal cost are given by

D(p) = p−η CM(q) = α
√
q + q2

so that the functional equation to be solved for S(p) is[
p− S(p)pη+1

η

]
−
[
α
√

S(p) + S(p)2
]
= 0 (5)

The collocation method
In equation (5), the unknown is the supply function S(p), which makes (??) and infinite-
dimension equation. Instead of solving the equation directly, we will approximate its
solution using n Chebyshev polynomials ϕi(x), which are defined recursively for x ∈ [0, 1]
as:

ϕ0(x) = 1

ϕ1(x) = x

ϕk+1(pi) = 2xϕk(x)− ϕk−1(x), fork = 1, 2, . . .
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In addition, instead of requiring that both sides of the equation be exactly equal over
the entire domain of p ∈ ℜ+, we will choose n Chebyshev nodes pi in the interval [a, b]:

pi =
a+ b

2
+

ba

2
cos

(
n− i+ 0.5

n
π

)
, for i = 1, 2, . . . , n (6)

Thus, the supply is approximated by

S(pi) =
n−1∑
k=0

ckϕk(pi)

Substituting this last expression in (??) for each of the placement nodes (Chebyshev in
this case) results in a non-linear system of n equations (one for each node) in n unknowns
ck (one for each polynomial of Chebyshev), which in principle can be solved by Newton’s
method, as in the last example. Thus, in practice, the system to be solved is

[
pi −

(∑n−1
k=0 ckϕk(pi)

)
pη+1
i

η

]
−

α
√√√√n−1∑

k=0

ckϕk(pi) +

(
n−1∑
k=0

ckϕk(pi)

)2
 = 0 (7)

for i = 1, 2, . . . , n and for k = 1, 2, . . . , n.

Solving the model with Python
To solve this model we start a new Python session:

import numpy as np
import matplotlib.pyplot as plt

from compecon import BasisChebyshev, NLP, nodeunif
from compecon.demos import demo

and set the α and η parameters

alpha, eta = 1.0, 3.5

For convenience, we define a lambda function to represent the demand

D = lambda p: p**(-eta)

We will approximate the solution for prices in the p ∈ [1
2
, 2] interval, using 25 collo-

cation nodes. The compecon library provides the BasisChebyshev class to make com-
putations with Chebyshev bases:
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n, a, b = 25, 0.5, 2.0
S = BasisChebyshev(n, a, b, labels=['price'], l=['supply'])

Let’s assume that our first guess is S(p) = 1. To that end, we set the value of S to
one in each of the nodes

p = S.nodes
S.y = np.ones_like(p)

It is important to highlight that in this problem the unknowns are the ck coefficients
from the Chebyshev basis; however, an object of BasisChebyshev class automatically
adjusts those coefficients so they are consistent with the values we set for the function at
the nodes (here indicated by the .y property)

We are now ready to define the objective function, which we will call resid. This
function takes as its argument a vector with the 25 Chebyshev basis coefficients and
returns the left-hand side of the 25 equations defined by(7).

def resid(c):
S.c = c # update interpolation coefficients
q = S(p) # compute quantity supplied at price nodes
return p - q * (p ** (eta+1) / eta) - alpha * np.sqrt(q) - q ** 2

Note that the resid function takes a single argument (the coefficients for the Cheby-
shev basis). All other parameters (Q, p, eta, alpha must be declared in the main
script, where Python will find their values.

To use Newton’s method, it is necessary to compute the Jacobian matrix of the
function whose roots we are looking for. In certain occasions, like in the problem we
are dealing with, coding the computation of this Jacobian matrix correctly can be quite
cumbersome. The NLP class provides, besides the Newton’s method (which we used in
the last example), the Broyden’s method, whose main appeal is that it does not require
the coding of the Jacobian matrix (the method itself will approximate it).

cournot = NLP(resid)
S.c = cournot.broyden(S.c, tol=1e-12, print=True)

After 17 iterations, Broyden’s method converges to the desired solution. We can vi-
sualize this in Figure 3, which shows the value of the function on 501 different points
within the approximation interval. Notice that the residual plot crosses the horizontal
axis 25 times; this occurs precisely at the collocation nodes (represented by red dots).
This figure also shows the precision of the approximation: outside nodes, the function is
within 5× 10−11 units from zero.
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One of the advantages of working with the BasisChebyshev class is that, once the
collocation coefficients have been found, we can evaluate the supply function by calling
the S object as if it were a Python function. Thus, for example, to find out the quantity
supplied by the firm when the price is 1.2, we simply evaluate print(S(1.2)), which
returns 0.4650. We use this feature next to compute the effective supply curve when
there are 5 identical firms in the market; the result is shown in Figure 2.

pplot = nodeunif(501, a, b)
demo.figure('Cournot Effective Firm Supply Function',

'Quantity', 'Price', [0, 4], [a, b])
plt.plot(5 * S(pplot), pplot, D(pplot), pplot)
plt.legend(('Supply','Demand'))

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Quantity

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Pr
ic

e

Cournot Effective Firm Supply Function
Supply
Demand

Figure 2: Supply and demand when there are 5 firms

This code block generates Figure 3.

p = pplot
demo.figure('Residual Function for Cournot Problem',

'Quantity', 'Residual')
plt.hlines(0, a, b, 'k', '--', lw=2)
plt.plot(pplot, resid(S.c))
plt.plot(S.nodes,np.zeros_like(S.nodes),'r*')
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Figure 3: Approximation residuals for equation (5)

We now plot the effective supply for a varying number of firms; the result is shown
in Figure 4.

m = np.array([1, 3, 5, 10, 15, 20])
demo.figure('Supply and Demand Functions', 'Quantity', 'Price', [0, 13])
plt.plot(np.outer(S(pplot), m), pplot)
plt.plot(D(pplot), pplot, linewidth=4, color='black')
plt.legend(['m=1', 'm=3', 'm=5', 'm=10', 'm=15', 'm=20', 'demand'])

In Figure 4 notice how the equilibrium price and quantity change as the number of
firms increases. The last figure in this example (Figure 5), shows the equilibrium price
as a function of the number of firms.

pp = (b + a) / 2
dp = (b - a) / 2
m = np.arange(1, 26)
for i in range(50):

dp /= 2
pp = pp - np.sign(S(pp) * m - D(pp)) * dp

demo.figure('Cournot Equilibrium Price as Function of Industry Size',
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Figure 4: Change in the effective supply as the number of firms increases

'Number of Firms', 'Price')
plt.bar(m, pp)
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Figure 5: Equilibrium price as a function of the number of firms
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Example 3: Importing data from Internet
Oftentimes we need to keep track of some economic indicators. This work usually requires
visiting the website of a data provider, looking for the required indicators, downloading
the data (possibly in several different files), copying them to a common file, arranging
them properly, and only after completing these cumbersome tasks, plotting them. If this
work has to be done periodically then it is also necessary to thoroughly document each
of these steps so we can replicate them exactly in the future. Needless to say, if it is
necessary to do all these tasks with numerous indicators, the work ends up demanding a
considerable amount of time and is prone to many errors.

To facilitate this work, we can use Python to download data available in Internet
directly, thanks to packages such as pandas-datareader. This is easily done when data
providers supply an API –application program interface—which specifies how a language
like Python can find the desired data.

Let us illustrate this with an example. Suppose we want recent data on economic
growth for the member countries of the CMCA. The World Bank provides the relevant
data in its “World Database”, which we can read with the wb module from pandas_datareader.

from pandas_datareader import wb

To be able to download data from the World Bank, we first need to know the exact
code of the indicator we want to read. The first time we do this task we will not know
this code, but we can look for it in the World Bank website or more easily from Python
itself. For example, to find data on real GDP per capita, we run the following using the
.search function:

wb.search('gdp.*capita.*const').iloc[:,:2]

where the dot followed by an asterisk (.*) indicates that any text in that position is a
match. This function returns a data table with information about indicators that match
the search criteria. In the preceding line, we use the code .iloc[:,:2] so that Python
only prints the first two columns from that table.

After running that search, we choose the ’NY.GDP.PCAP.KD’ indicator, whose de-
scription is “GDP per capita (constant 2010 US$)”. We define a variable with a list of
country codes of the CMCA countries:

paises = ['CR', 'DO', 'GT', 'HN', 'NI', 'SV']

and we proceed to reed data from 1991:
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datos = wb.download(indicator='NY.GDP.PCAP.KD',
country=paises,start=1991, end=2016)

It is also possible to read data for more than one indicator in a single call to the
wb.download function, writing their codes in a list (just like we did to read data on all
six countries at once). In any case, we get a data table in panel format, where each
columns corresponds to one of the indicators. For our example in particular, where
we only read one indicator, it would be useful if the table was arranged so that each
row correspond to a year and each column to a country. We can achieve it with this
instruction:

GDP = datos.reset_index().pivot('year','country')

Once data is arrange this way, it is very easy to compute growth for all countries in
a single step:

GROWTH = 100 * GDP.pct_change()

or to generate a formatted data table to be included in a LATEXdocument

GROWTH.tail(6).round(2).to_latex('micuadro.tex')

In last instruction, the .tail(6) part indicates that we only want the last six obser-
vations, while the .to_latex('micuadro.tex') part exports that table to a file named
’micuadro.tex’, which can later te included in a document. The (slightly edited) result
of this code is in Table 1.

Finally, we plot the results in Figure 6. It is possible to enhance the aesthetic aspect
of this figure by, for example, changing the legend position. Such enhancements are not
presented here for space considerations.

GROWTH.columns = paises
GROWTH.plot()

Costa Rica Dominican
Republic

El Salvador Guatemala Honduras Nicaragua

2011 3.06 1.77 1.76 1.94 1.89 5.03
2012 3.59 1.50 1.41 0.80 2.24 5.24
2013 1.13 3.45 1.37 1.54 0.99 3.72
2014 2.54 6.32 0.93 2.03 1.29 3.60
2015 3.63 5.79 1.79 2.03 1.89 3.68
2016 3.27 5.44 1.85 1.02 1.88 3.55

Table 1: GDP per capita growth in CARD, 2011-2016
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Figure 6: GDP per capita growth in CARD, 1992-2016

It is also possible to plot each of the time series in a separate subplot, with the
instruction

GROWTH.plot(subplots=True, layout=[2,3], sharey=True)

where we have specified that each time series should be plotted separately (subplots=True),
be arranged in two rows and three columns (layout=[2,3]), and all subplots must have
the same “y” axis (sharey=True, to facilitate country comparisons). Figure 7 shows the
result.
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Figure 7: GDP per capita growth in CARD, by country, 2011-2016
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Example 4: Econometric estimations
The Python statsmodels package enable the estimation of many types of econometric
models, although not as many as can be estimated using R. A simple illustration is the
estimation of a Keynesian consumption function,

ln(ct) = β0 + β1 ln(yt) + ϵt

where ct stands for consumption, yt income, ϵ a stochastic shock. In this case β1 corre-
sponds to the income elasticity of consumption.

Just like in the previous example, we will use pandas-datareader to import data
from Internet. In this example we also import the log function from the numpy pack-
age to compute the logarithm of the data, as well as the formula.api module form
statsmodels to estimate the model.

import pandas_datareader.data as web
from numpy import log
import statsmodels.formula.api as smf

Once this is done, we are ready to import data. In this example, we use quarterly
data on consumption and production in the United States, available in FRED, a database
from the Federal Reserve Bank of Saint Louis. For “consumption” we use the “PCEC”
(Personal Consumption Expenditures) series, and for “income” we use “GDP” (Gross
Domestic Product).

usdata = web.DataReader(['PCEC','GDP'],'fred', 1947, 2017)

After executing this instuction, the usdata variable points to a pandas data table, in
which each column corresponds to a variable and each row to a quarter. We now estimate
the model by ordinary least squares (.ols) and print a summary of the results

mod = smf.ols('PCEC ~ GDP', log(usdata)).fit()
print(mod.summary())

Notice that the .ols function takes two arguments, the formula specifying the model,
and the name of the data table containing the variables. In this code block we specify the
data as log(usdata), which tells Python that we want the logarithm of the data, saving
us the task of generating another data table with the transformed data beforehand (as
would be necessary in, for example, Stata). Alternatively, that line can also be written
as
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mod = smf.ols('log(PCEC) ~ log(GDP)', usdata).fit()

which is convenient in cases where not all variables must be transformed.

OLS Regression Results
==============================================================================
Dep. Variable: PCEC R-squared: 1.000
Model: OLS Adj. R-squared: 1.000
Method: Least Squares F-statistic: 5.912e+05
Date: Tue, 12 Dec 2017 Prob (F-statistic): 0.00
Time: 13:30:02 Log-Likelihood: 579.06
No. Observations: 281 AIC: -1154.
Df Residuals: 279 BIC: -1147.
Df Model: 1
Covariance Type: nonrobust
==============================================================================

coef std err t P>|t| [0.025 0.975]
------------------------------------------------------------------------------
Intercept -0.6799 0.011 -63.505 0.000 -0.701 -0.659
GDP 1.0280 0.001 768.865 0.000 1.025 1.031
==============================================================================
Omnibus: 49.070 Durbin-Watson: 0.070
Prob(Omnibus): 0.000 Jarque-Bera (JB): 78.376
Skew: 1.009 Prob(JB): 9.57e-18
Kurtosis: 4.619 Cond. No. 47.2
==============================================================================

Warnings:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Table 2: Estimation of a consumption function, series in levels

The results from this regression are in Table 2. As it is expected in a regression of
trending time series, the R2 statistic is very close to one, and the Durbin-Watson statistic
points to the high possibility of autocorrelation in the residuals. This document does not
aim at being a guide of best practices in econometrics, but let us consider one last model
in which consumption growth depends on income growth:

∆ ln(ct) = β0 + β1∆ ln(yt) + ϵt

with we estimate in Python with

smf.ols('PCEC ~ GDP', log(usdata).diff()).fit().summary()

Results from this estimation are in Table 3. We notice that now the R2 is no longer
close to one, and that the Durbin-Watson statistic is closer to 2.0, indicating lack of
autocorrelation.

This last line of code, where we estimate the model with first-differenced data, high-
lights one of the reasons why code written in Python is so concise: it is not always
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necessary to store intermediate results in variable, because we can simply chain sevearal
operations. In the case at hand, we have specified a model (.ols), estimated it (.fit)
and gotten a table summarizing the results (.summary). Similarly, we have computed
the logarithm (usdata) of data in log table, and to its result we have computed its first-
difference (.diff). To better appreciate how concise this code is, let us compare that
line with the following block, which takes 8 lines of code to perform the same operations:

usdata['lPCEC'] = log(usdata['PCEC'])
usdata['lGDP'] = log(usdata['GDP'])
usdata['dlPCEC'] = usdata['lPCEC'].diff()
usdata['dlGDP'] = usdata['lGDP'].diff()
model = smf.ols('dlPCEC ~ dlGDP', usdata)
results = model.fit()
table = results.summary()
print(table)

With results from Table 3 at hand, we could predict that a one percentage point
(p.p.) increase in GDP growth would lead to a 0.618 p.p. increase in consumption
growth. However, given that the data sample covers such a long period (nearly 70 years
of quarterly observation), it is reasonable to wonder whether the parameters in this model
are constant, given that several structural changes could have occurred along these years.

OLS Regression Results
==============================================================================
Dep. Variable: PCEC R-squared: 0.497
Model: OLS Adj. R-squared: 0.495
Method: Least Squares F-statistic: 274.8
Date: Tue, 12 Dec 2017 Prob (F-statistic): 2.15e-43
Time: 15:52:55 Log-Likelihood: 998.76
No. Observations: 280 AIC: -1994.
Df Residuals: 278 BIC: -1986.
Df Model: 1
Covariance Type: nonrobust
==============================================================================

coef std err t P>|t| [0.025 0.975]
------------------------------------------------------------------------------
Intercept 0.0062 0.001 8.743 0.000 0.005 0.008
GDP 0.6180 0.037 16.578 0.000 0.545 0.691
==============================================================================
Omnibus: 106.686 Durbin-Watson: 2.536
Prob(Omnibus): 0.000 Jarque-Bera (JB): 1182.717
Skew: -1.195 Prob(JB): 1.50e-257
Kurtosis: 12.781 Cond. No. 91.0
==============================================================================

Warnings:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Table 3: Estimation of a consumption function, series in first-difference

22



One way to evaluate such possibility is to estimate the model with a rolling sample. In
particular, we are going to estimate this model with 24 quarterly observations rolling
window, changing the sample by one quarter in every step.

In this case, since we are going to need growth data many times, it is more efficient
to compute growth data only once and store it in a growth variable. With the [1:]
code we are dropping the first observation, which we lose when we compute the first-
order difference (.diff). Furthermore, we use the .shape property from the table to
find out how many observations T we have, and then we set the window range to h=24
observations:

growth = (100*log(usdata).diff())[1:]
T, nvar = growth.shape
h = 24

To facilitate next step, we define function window_beta1, which takes as its only
argument the number of the last observation to be included in the estimation, and returns
the value of the estimated GDP coefficient

def window_beta1(k):
return smf.ols('PCEC~GDP',growth[k-h:k]).fit().params['GDP']

With this, we are ready to estimate the model many times, adding the results to the
growth table as the beta1 “indicator”. Plotting the results we get Figure 8, where we
clearly see that the effect of GDP growth on consumption growth is quite unstable, and
thus the predictions made with the simple model could be very poor.

growth.loc[h-1:,'beta1'] = [window_beta1(k) for k in range(h,T+1)]
growth[['beta1']].plot()

23



1959 1969 1979 1989 1999 2009 2019
DATE

0.2

0.4

0.6

0.8

1.0
beta1

Figure 8: Estimated effect of income over consumption, 24-observation rolling windows
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Example 5: Dynamic documents
To conclude this note, I let the reader know that this very document is an example of
what is known as a “dynamic document”, in the sense that it was generated by inter-
weaving LATEXcode with Python code. The main benefit of this is that if in the future we
need to update the previous examples (say to use updated data in the tables and graphs),
it would suffice to rerun the code that generated this document. It will not be necessary
to use an Internet browser to get data, nor to copy-and-paste the graphs in the document.

Dynamic documents are extremely useful, because they enable significant time savings
in the updating of periodic reports. Readers who are interested in learning how to
create one of these documents will need to know LATEXand to review the pythontex
documentation.
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