A note on Chebyshev polynomials

Randall Romero Aguilar

First draft: September 30, 2014
This draft: October 4, 2014

Chebyshev polynomials are very useful for interpolating functions. Formally, the Chebyshev polynomial of degree n is defined as

$$
T_{n}(x)=\cos \left(n \cos ^{-1} x\right), \quad \text { for } x \in[-1,1]
$$

At first look, this expression does not resemble a polynomial at all!
In this note we will follow two different approaches to show that $T_{n}(x)$ is indeed a polynomial. We start with the easy one, which only requires some basic trigonometric identities in real numbers, and where we will find a recursive definition of the Chebyshev polynomials. The not-so-easy approach requires working with complex numbers, but it will give us a closed formula for computing the polynomials.

The easy path

Using the definition of the Chebyshev polynomials and a couple of trigonometric results we can find a convenient recursion:

$$
\begin{aligned}
T_{n+1}(x)+T_{n-1}(x) & =\cos \left[(n+1) \cos ^{-1} x\right]+\cos \left[(n-1) \cos ^{-1} x\right] \\
& =\cos \left[n \cos ^{-1} x+\cos ^{-1} x\right]+\cos \left[n \cos ^{-1} x-\cos ^{-1} x\right]
\end{aligned}
$$

apply the identity $\cos (u+v)+\cos (u-v)=2 \cos u \cos v$ to get

$$
\begin{aligned}
& =2 \cos \left(n \cos ^{-1} x\right) \cos \left(\cos ^{-1} x\right) \\
& =2 x T_{n}(x)
\end{aligned}
$$

That is, given two consecutive Chebyshev polynomials, the next one can be defined by the recursion

$$
T_{n+1}(x)=2 x T_{n}(x)-T_{n-1}(x)
$$

The first two elements of the sequence can be computed easily:

$$
\begin{aligned}
& T_{0}(x)=\cos \left(0 \cos ^{-1} x\right)=1 \\
& T_{1}(x)=\cos \left(1 \cos ^{-1} x\right)=x
\end{aligned}
$$

Therefore, an alternative definition, where the polynomials are more evident, is given by the recursion:

$$
\begin{aligned}
T_{0}(x) & =1 \\
T_{1}(x) & =x \\
T_{n+1}(x) & =2 x T_{n}(x)-T_{n-1}(x), \quad \text { for } n=1,2, \ldots
\end{aligned}
$$

The challenging path

In this path, we will need the binomial and de Moivre's formulas.

The binomial formula for complex numbers is a straightforward generalization of the corresponding formula for real numbers:

Theorem 1 (Binomial formula for complex numbers) For z_{1} and z_{2} complex numbers

$$
\left(z_{1}+z_{2}\right)^{n}=\sum_{k=0}^{n}\binom{n}{k} z_{1}^{n-k} z_{2}^{k}
$$

De Moivre's formula is easily derived from Euler's formula $e^{i x}=\cos (n x)+i \sin (n x)$, where i is the imaginary unit.

Theorem 2 (de Moivre's formula)

$$
(\cos \theta+i \sin \theta)^{n}=\cos n \theta+\sin n \theta
$$

We are now ready to show that $T_{n}(x)$ is a polynomial.
Theorem 3 (Chebyshev polynomials) For $-1 \leq x \leq 1$ the expression

$$
T_{n}(x)=\cos \left(n \cos ^{-1} x\right)
$$

is a polynomial of degree n in the variable x.
Proof Let's define the integer m as:

$$
m= \begin{cases}n / 2 & \text { if } n \text { is even } \\ (n-1) / 2 & \text { if } n \text { is odd }\end{cases}
$$

Start with de Moivre's and the binomial formulas

$$
\begin{aligned}
\cos n \theta+i \sin n \theta & =(\cos \theta+i \sin \theta)^{n} \\
& =\sum_{k=0}^{n}\binom{n}{k} \cos ^{n-k} \theta(i \sin \theta)^{k} \\
& =\sum_{k=0, \mathrm{even}}^{n}\binom{n}{k} \cos ^{n-k} \theta i^{k} \sin ^{k} \theta+\sum_{k=0, \text { odd }}^{n}\binom{n}{k} \cos ^{n-k} \theta i^{k} \sin ^{k} \theta \\
& =\sum_{k=0}^{m}\binom{n}{2 k} \cos ^{n-2 k} \theta i^{2 k} \sin ^{2 k} \theta+\sum_{k=0}^{m}\binom{n}{2 k+1} \cos ^{n-2 k-1} \theta i^{2 k+1} \sin ^{2 k+1} \theta \\
& =\sum_{k=0}^{m}\binom{n}{2 k}(-1)^{k} \cos ^{n-2 k} \theta \sin ^{2 k} \theta+\sum_{k=0}^{m}\binom{n}{2 k+1}(-1)^{k} i \cos ^{n-2 k-1} \theta \sin ^{2 k+1} \theta
\end{aligned}
$$

Equating the real parts:

$$
\begin{aligned}
\cos n \theta & =\sum_{k=0}^{m}\binom{n}{2 k}(-1)^{k} \cos ^{n-2 k} \theta \sin ^{2 k} \theta \\
& =\sum_{k=0}^{m}\binom{n}{2 k}(-1)^{k} \cos ^{n-2 k} \theta\left(1-\cos ^{2} \theta\right)^{k} \\
& =\sum_{k=0}^{m}\binom{n}{2 k} \cos ^{n-2 k} \theta\left(\cos ^{2} \theta-1\right)^{k}
\end{aligned}
$$

Write $x=\cos \theta$ and suppose that $0 \leq \theta \leq \pi$, in which case $-1 \leq x \leq 1$ and $\theta=\cos ^{-1} x$. Substitute

$$
\cos \left(n \cos ^{-1} x\right)=\sum_{k=0}^{m}\binom{n}{2 k} x^{n-2 k}\left(x^{2}-1\right)^{k}
$$

using the binomial formula once more

$$
\begin{aligned}
& =\sum_{k=0}^{m}\left[\binom{n}{2 k} x^{n-2 k} \sum_{h=0}^{k}\binom{k}{h}(-1)^{h}\left(x^{2}\right)^{k-h}\right] \\
& =\sum_{k=0}^{m} \sum_{h=0}^{k}\binom{n}{2 k}\binom{k}{h}(-1)^{h} x^{n-2 h}
\end{aligned}
$$

From this formula it is clear that the highest degree monomials are obtained when $h=0$. To complete the proof, all we need to show is that the x^{n} monomials do not cancel each other: setting $h=0$ we obtain the leading coefficient α_{n} :

$$
\begin{aligned}
\alpha_{n} & =\sum_{k=0}^{m}\binom{n}{2 k}\binom{k}{0}(-1)^{0} \\
& =\sum_{k=0}^{m}\binom{n}{2 k} \\
& =2^{n-1}
\end{aligned}
$$

Useful properties

Roots and extrema

Since $T_{n}(x)=\cos \left(n \cos ^{-1} x\right)$, it is clear that $-1 \leq T_{n}(x) \leq 1$ (remember that the polynomial is only defined for $x \in[-1,1])$. Extrema occurs when $n \cos ^{-1} x=k \pi$ for some integer k :

$$
x=\cos \left(\frac{k}{n} \pi\right), \quad k=0, \ldots, n
$$

On the other hand, the zeros of the polynomial occur when $n \cos ^{-1} x=k \pi+\frac{\pi}{2}$ for some integer k :

$$
x=\cos \left(\frac{2 k-1}{2 n} \pi\right), \quad k=1, \ldots, n
$$

Orthogonality

-TO BE COMPLETED-

References

Brown and Churchill (1996) Complex Variables and Applications, $6^{\text {th }}$ edition. McGraw-Hill.

