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Chebyshev polynomials are very useful for interpolating functions. Formally, the Chebyshev polynomial of

degree 𝑛 is defined as

𝑇𝑛(𝑥) = cos(𝑛 cos−1 𝑥), for 𝑥 ∈ [−1, 1]

At first look, this expression does not resemble a polynomial at all!

In this note we will follow two different approaches to show that 𝑇𝑛(𝑥) is indeed a polynomial. We start

with the easy one, which only requires some basic trigonometric identities in real numbers, and where we will

find a recursive definition of the Chebyshev polynomials. The not-so-easy approach requires working with complex

numbers, but it will give us a closed formula for computing the polynomials.

The easy path

Using the definition of the Chebyshev polynomials and a couple of trigonometric results we can find a convenient

recursion:

𝑇𝑛+1(𝑥) + 𝑇𝑛−1(𝑥) = cos[(𝑛 + 1) cos−1 𝑥] + cos[(𝑛 − 1) cos−1 𝑥]
= cos[𝑛 cos−1 𝑥 + cos−1 𝑥] + cos[𝑛 cos−1 𝑥 − cos−1 𝑥]

apply the identity cos(𝑢 + 𝑣) + cos(𝑢 − 𝑣) = 2 cos 𝑢 cos 𝑣 to get

= 2 cos(𝑛 cos−1 𝑥) cos(cos−1 𝑥)
= 2𝑥𝑇𝑛(𝑥)

That is, given two consecutive Chebyshev polynomials, the next one can be defined by the recursion

𝑇𝑛+1(𝑥) = 2𝑥𝑇𝑛(𝑥) − 𝑇𝑛−1(𝑥)

The first two elements of the sequence can be computed easily:

𝑇0(𝑥) = cos(0 cos−1 𝑥) = 1
𝑇1(𝑥) = cos(1 cos−1 𝑥) = 𝑥

Therefore, an alternative definition, where the polynomials are more evident, is given by the recursion:

𝑇0(𝑥) = 1
𝑇1(𝑥) = 𝑥

𝑇𝑛+1(𝑥) = 2𝑥𝑇𝑛(𝑥) − 𝑇𝑛−1(𝑥), for 𝑛 = 1, 2, …

1



The challenging path

In this path, we will need the binomial and de Moivre’s formulas.

The binomial formula for complex numbers is a straightforward generalization of the corresponding formula

for real numbers:

Theorem 1 (Binomial formula for complex numbers) For 𝑧1 and 𝑧2 complex numbers

(𝑧1 + 𝑧2)𝑛 =
𝑛
􏾜
𝑘=0

􏿶
𝑛
𝑘􏿹
𝑧𝑛−𝑘1 𝑧𝑘2

DeMoivre’s formula is easily derived fromEuler’s formula 𝑒𝑖𝑥 = cos(𝑛𝑥)+𝑖 sin(𝑛𝑥), where 𝑖 is the imaginary

unit.

Theorem 2 (de Moivre’s formula)

(cos 𝜃 + 𝑖 sin 𝜃)𝑛 = cos 𝑛𝜃 + sin 𝑛𝜃

We are now ready to show that 𝑇𝑛(𝑥) is a polynomial.

Theorem 3 (Chebyshev polynomials) For −1 ≤ 𝑥 ≤ 1 the expression

𝑇𝑛(𝑥) = cos(𝑛 cos−1 𝑥)

is a polynomial of degree 𝑛 in the variable 𝑥.

Proof Let’s define the integer 𝑚 as:

𝑚 =
⎧⎪⎨
⎪⎩
𝑛/2 if 𝑛 is even,
(𝑛 − 1)/2 if 𝑛 is odd.

Start with de Moivre’s and the binomial formulas

cos 𝑛𝜃 + 𝑖 sin 𝑛𝜃 = (cos 𝜃 + 𝑖 sin 𝜃)𝑛

=
𝑛
􏾜
𝑘=0

􏿶
𝑛
𝑘􏿹

cos𝑛−𝑘 𝜃 (𝑖 sin 𝜃)𝑘

=
𝑛
􏾜

𝑘=0,even
􏿶
𝑛
𝑘􏿹

cos𝑛−𝑘 𝜃 𝑖𝑘 sin𝑘 𝜃 +
𝑛
􏾜

𝑘=0,odd
􏿶
𝑛
𝑘􏿹

cos𝑛−𝑘 𝜃 𝑖𝑘 sin𝑘 𝜃

=
𝑚
􏾜
𝑘=0

􏿶
𝑛
2𝑘􏿹

cos𝑛−2𝑘 𝜃 𝑖2𝑘 sin2𝑘 𝜃 +
𝑚
􏾜
𝑘=0

􏿶
𝑛

2𝑘 + 1􏿹
cos𝑛−2𝑘−1 𝜃 𝑖2𝑘+1 sin2𝑘+1 𝜃

=
𝑚
􏾜
𝑘=0

􏿶
𝑛
2𝑘􏿹

(−1)𝑘 cos𝑛−2𝑘 𝜃 sin2𝑘 𝜃 +
𝑚
􏾜
𝑘=0

􏿶
𝑛

2𝑘 + 1􏿹
(−1)𝑘𝑖 cos𝑛−2𝑘−1 𝜃 sin2𝑘+1 𝜃
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Equating the real parts:

cos 𝑛𝜃 =
𝑚
􏾜
𝑘=0

􏿶
𝑛
2𝑘􏿹

(−1)𝑘 cos𝑛−2𝑘 𝜃 sin2𝑘 𝜃

=
𝑚
􏾜
𝑘=0

􏿶
𝑛
2𝑘􏿹

(−1)𝑘 cos𝑛−2𝑘 𝜃 (1 − cos2 𝜃)𝑘

=
𝑚
􏾜
𝑘=0

􏿶
𝑛
2𝑘􏿹

cos𝑛−2𝑘 𝜃 (cos2 𝜃 − 1)𝑘

Write 𝑥 = cos 𝜃 and suppose that 0 ≤ 𝜃 ≤ 𝜋, in which case −1 ≤ 𝑥 ≤ 1 and 𝜃 = cos−1 𝑥. Substitute

cos(𝑛 cos−1 𝑥) =
𝑚
􏾜
𝑘=0

􏿶
𝑛
2𝑘􏿹

𝑥𝑛−2𝑘 (𝑥2 − 1)𝑘

using the binomial formula once more

=
𝑚
􏾜
𝑘=0

􏿰􏿶
𝑛
2𝑘􏿹

𝑥𝑛−2𝑘
𝑘
􏾜
ℎ=0

􏿶
𝑘
ℎ􏿹
(−1)ℎ(𝑥2)𝑘−ℎ􏿳

=
𝑚
􏾜
𝑘=0

𝑘
􏾜
ℎ=0

􏿶
𝑛
2𝑘􏿹 􏿶

𝑘
ℎ􏿹
(−1)ℎ𝑥𝑛−2ℎ

From this formula it is clear that the highest degree monomials are obtained when ℎ = 0. To complete the

proof, all we need to show is that the 𝑥𝑛 monomials do not cancel each other: setting ℎ = 0 we obtain the

leading coefficient 𝛼𝑛:

𝛼𝑛 =
𝑚
􏾜
𝑘=0

􏿶
𝑛
2𝑘􏿹 􏿶

𝑘
0􏿹
(−1)0

=
𝑚
􏾜
𝑘=0

􏿶
𝑛
2𝑘􏿹

= 2𝑛−1

Useful properties

Roots and extrema

Since 𝑇𝑛(𝑥) = cos(𝑛 cos−1 𝑥), it is clear that −1 ≤ 𝑇𝑛(𝑥) ≤ 1 (remember that the polynomial is only defined for

𝑥 ∈ [−1, 1]). Extrema occurs when 𝑛 cos−1 𝑥 = 𝑘𝜋 for some integer 𝑘:

𝑥 = cos 􏿶
𝑘
𝑛
𝜋􏿹 , 𝑘 = 0,… , 𝑛

On the other hand, the zeros of the polynomial occur when 𝑛 cos−1 𝑥 = 𝑘𝜋 + 𝜋
2 for some integer 𝑘:

𝑥 = cos 􏿶
2𝑘 − 1
2𝑛

𝜋􏿹 , 𝑘 = 1,… , 𝑛
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Orthogonality

—TO BE COMPLETED—
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