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Introduction

This note shows the intuition behind the use of dynamic programming in the solution of dynamic

programming problems. We present two models of a consumer who wants to maximize his lifetime

consumption over an infinite horizon, by optimally allocating his resources through time. In the

first model, the consumer uses a financial instrument (say a bank deposit without overdraft limit)

to smooth consumption; in the second, the consumer has access to a production technology and

uses the level of capital to smooth consumption.

To keep matters simple, we assume that there is a representative consumer whose instant utility

function is logarithmic, and that there is no uncertainty in the model.

1 Consumption and financial assets

In this first model, the consumer is endowed with A units of the consumption good, but he does

not have income. Savings can be kept in the form of a bank deposit, which yields a interest rate r.

The lifetime utility of the consumer is U(c0, c1, . . . , cT ) =
∑T

t=0 β
t ln ct. His initial assets are

A0. The budget constraint is At+1 = (1 + r)(At − ct). The consumer needs to choose the optimal

1



values c∗t that will maximize U . Once he chooses the sequence {c∗t}Tt=0 of optimal consumption,

the maximum utility that he can achieved is ultimately constraint only by his initial assets A0 and

by how many periods he is going to live T + 1. So define the value function V as the maximum

utility the consumer can get as a function of his initial assets

VT+1(A0) = maxU(ct) =
T∑
t=0

βt ln c∗t (1)

Consumer problem:

VT+1(A0) = max
{c,A}

T∑
t=0

βt ln ct, (objective) (2a)

At+1 = (1 + r)(At − ct), (budget constraint) (2b)

AT+1 ≥ 0 (leave no debts) (2c)

We now solve the problem for special cases T = 0, T = 1, T = 2, and then generalize for

T =∞.

Solution when T=0

In this case, consumer problem is simply

V1(A0) = max {ln c0} subject to

A1 = (1 + r)(A0 − c0),

A1 ≥ 0

We need to find c0 and A1. Substitute c0 = A0 − A1

1+r
in the objective function:

max
A1

ln

[
A0 −

A1

1 + r

]
subject to A1 ≥ 0
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This function is strictly decreasing on A1, so we set A1 to its minimum possible value; given

the constraint 2c, we set A1 = 0, which implies that c0 = A0 and V1(A0) = lnA0. In words, in the

last period of this life, it is optimal for a consumer to spend his entire assets.

Solution when T=1

The problem is now

V2(A0) = {ln c0 + β ln c1} subject to

A1 = (1 + r)(A0 − c0),

A2 = (1 + r)(A1 − c1),

A2 ≥ 0

We now need to find c0, c1, A1 and A2. Instead of solving today for all these quantities, think

of solving today only for c0 and A1, and next period solving for the remaining c1 and A2. But from

our example with T = 0 we learned that a consumer will spend his entire assets in the last period,

so we know that in next period the consumer will set c1 = A1 (his remaining assets, which he will

choose in the current period) and A2 = 0. So we can rewrite the problem as

V2(A0) = max
c0,c1,A1,A2

{ln c0 + β ln c1}

= max
c0,A1

{
ln c0 + βmax

c1,A2

[ln c1]

}
= max

c0,A1

{ln c0 + βV1(A1)}

subject to A1 = (1 + r)(A0 − c0). Again, we substitute c0 = A0 − A1

1+r
and solve the problem

max
A1

{
ln

[
A0 −

A1

1 + r

]
+ βV1(A1)

}
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The first order condition is

1

c0

−1
1 + r

+ βV ′1(A1) = 0⇒ 1 = (1 + r)βc0V
′
1(A1)

From the example with T = 0 we know that V1(A) = lnA, then V ′1(A1) =
1
A1

. Substitute in

the first order condition

1 = (1 + r)βc0
1
A1
⇒ A∗1 = (1 + r)βc∗0

Now substitute in the budget constraint to get (1 + r)βc∗0 = (1 + r)(A0 − c∗0). It follows that

c∗0 =
1

1+β
A0 ⇒ A∗1 =

(1+r)β
1+β

A0

and the value function is

V2(A0) = ln c∗0 + βV1(A
∗
1)

= ln c∗0 + β lnA∗1

= ln c∗0 + β ln[(1 + r)βc∗0]

= (1 + β) ln c∗0 + β ln β + β ln(1 + r)

= (1 + β) lnA0 − (1 + β) ln(1 + β) + β ln β + β ln(1 + r)

For simplicity, we can write V2(A0) = (1 + β) lnA0 + k2, where the term k2 is just a constant:

k2 = β ln(1 + r) + β ln β − (1 + β) ln(1 + β)

Solution when T=2

The problem is now
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V3(A0) = max
{
ln c0 + β ln c1 + β2 ln c2

}
subject to

A1 = (1 + r)(A0 − c0),

A2 = (1 + r)(A1 − c1),

A3 = (1 + r)(A2 − c2),

A3 ≥ 0

We will follow the same strategy that we used in the case T = 1 and choose only c0 and A1

this period, and let the consumer choose c1, c2, A2, A3 next period.

V3(A0) = max
c0,c1,c2,A1,A2,A3

{
ln c0 + β ln c1 + β2 ln c2

}
= max

c0,A1

{
ln c0 + β max

c1,c2,A2,A3

[ln c1 + β ln c2]

}
= max

c0,A1

{ln c0 + βV2(A1)}

Again, we substitute c0 = A0 − A1

1+r
and solve the problem

max
A1

{
ln

[
A0 −

A1

1 + r

]
+ βV2(A1)

}

The first order condition is now

1

c0

−1
1 + r

+ βV ′2(A1) = 0⇒ 1 = (1 + r)βc0V
′
2(A1)

From the example with T = 1 we know that V2(A) = (1 + β) lnA + k2. It follows that

V ′2(A1) =
1+β
A1

. Substitute in the first order condition

1 = (1 + r)βc0
1+β
A1
⇒ A∗1 = (1 + r)(β + β2)c∗0
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Now substitute in the budget constraint to get (1 + β)(1 + r)βc∗0 = (1 + r)(A0 − c∗0). Then

c∗0 =
1

1+β+β2A0 ⇒ A∗1 =
(1+r)(β+β2)

1+β+β2 A0

and the value function is

V3(A0) = ln c∗0 + βV2(A
∗
1)

= ln c∗0 + β[(1 + β) ln(A∗1) + k2]

= ln c∗0 + (β + β2) ln(A∗1) + βk2

= ln c∗0 + (β + β2) ln[(1 + r)(β + β2)c∗0] + βk2

= (1 + β + β2) ln c∗0 + (β + β2) ln(1 + r) + (β + β2) ln(β + β2) + βk2

= (1 + β + β2) lnA0 + k3

where k3 = (β+β2) ln(1+r)+(β+β2) ln β+(β+β2) ln(1+β)−(1+β+β2) ln(1+β+β2)+βk2.

After substituting k2 and simplifying we get

k3 = (β + 2β2) ln(1 + r) + (β + 2β2) ln β − (1 + β + β2) ln(1 + β + β2)

Solution when T =∞

Writing the consumer problem as a recursive optimization problem simplifies the task of solving

for the infinite horizon case. Let V∞ denote the value function, then from the previous examples
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we can write

V∞(A0) = max
cj ,Aj+1

{
∞∑
t=0

βt ln ct

}

= max
c0,A1

{ln c0 + βV∞−1(A1)}

At+1 = (1 + r)(At − ct), ∀t = 0, 1, . . .

For an infinitely lived consumer, next period he will still have an infinite horizon ahead of him,

so we could expect that V ≡ V∞ = V∞−1. This result, where the sequence {Vj}∞j=1 converges to

V , the fixed point of the Bellman equation, requires that |β| < 1. To gain some intuition, observe

the sequence {V1, V2, V3} = {1 lnA + k1, (1 + β) lnA + k2, (1 + β + β2) lnA + k3}; one could

speculate that the term Vn should take the form Vn+1 = (1+ β+ . . .+ βn) lnA+ kn+1, but its first

term has a geometric series that converges to 1
1−β if and only if −1 < β < 1.

Again, we substitute c0 = A0 − A1

1+r
in the Bellman equation and solve the problem

V (A0) = max
A1

{
ln

[
A0 −

A1

1 + r

]
+ βV (A1)

}
(3)

The first order condition is now

1

c0

−1
1 + r

+ βV ′(A1) = 0⇒ 1 = (1 + r)βc0V
′(A1) (4)

Now we have a complication: we need the derivative of V (A1), but we don’t know the form of

V . We are going to apply a result, known as the envelope condition, that says that we can take the

derivative of V (A0) in equation 3 pretending that A1 is not a function of A0. Envelope condition

is:

V ′(A0) =
1

c0
(5)

7



From 5, we infer that V ′(A1) =
1
c1

and substitute in 4:

1 = (1 + r)β
c0
c1

(6)

Equation 6 is known as the Euler equation. This implies that c1 = (1+r)βc0, or more generally

ct = [(1+ r)β]tc0. Since the consumer lifetime budget constraint is A0 = sum∞t=0[(1+ r)−tct], we

obtain:

A0 =
∞∑
t=0

[(1 + r)−tct]

=
∞∑
t=0

[(1 + r)−t(1 + r)tβtc0]

= c0

∞∑
t=0

βt

=
c0

1− β

⇒ c∗0 = (1− β)A0 (7)
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Then c∗t = (1 + r)tβt(1− β)A0, and the value function is

V (A0) =
∞∑
t=0

βt ln[(1 + r)tβt(1− β)A0]

=
∞∑
t=0

βt lnA0 +
∞∑
t=0

βt ln[(1 + r)tβt(1− β)]

= lnA0

∞∑
t=0

βt +
∞∑
t=0

βt[t ln(1 + r)β + ln(1− β)]

= lnA0
1

1− β
+
∞∑
t=0

βt[t ln(1 + r)β + ln(1− β)]

=
1

1− β
lnA0 + ln[(1 + r)β]

∞∑
t=0

tβt + ln(1− β)
∞∑
t=0

βt

=
1

1− β
lnA0 + ln[(1 + r)β]

β

1− β

∞∑
t=1

t(1− β)βt−1 + ln(1− β)
1− β

=
1

1− β
lnA0 + ln[(1 + r)β]

β

(1− β)2
+

ln(1− β)
1− β

=
1

1− β
lnA0 +

β ln(1 + r) + β ln β + (1− β) ln(1− β)
(1− β)2

In the second to last step, we used the fact that
∑∞

t=1 t(1 − β)βt−1 is the expected value of a

geometric random variable with parameter 1− β.

The last point in our discussion is to justify the envelope condition: deriving V (A0) pretending

that A∗1 did not depend on A0. But we know it does, so write A∗1 = h(A0) for some function h.

From the definition of the value function write:

V (A0) = ln

[
A0 −

h(A0)

1 + r

]
+ βV (h(A0)) (8)

Take derivative and arrange terms:
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V ′(A0) =
1
c0

[
1− h′(A0)

1 + r

]
+ βV ′(h(A0))h

′(A0)

= 1
c0
+

[
−1
c0

1

1 + r
+ βV ′(A∗1)

]
h′(A0)

but the term in square brackets must be zero from the first order condition 4.

2 Consumption and physical investment

We now assume that the consumer is endowed with k units of a good that can be used either for

consumption or for the production of additional good1. We refer to “capital” to the part of the good

that is used for future production, and assume that capital fully depreciates with the production

process.

The lifetime utility of the consumer is again U(c0, c1, . . . , c∞) =
∑∞

t=0 β
t ln ct, and his initial

endowment of capital is k0. The production function is y = Akα, where A > 0 and 0 < α < 1 are

parameters. The budget constraint is ct + kt+1 = Akαt .

In this case, the Bellman equation is

V (k0) = max
c0,k1
{ln c0 + βV (k1)}

Substitute the constraint c0 = Akα0 − k1 in the Bellman equation. To simplify the notation, we

will drop the time index and will use a prime (as in k’) to denote ‘next period” variables.

In this case, the Bellman equation is

V (k) = max
k′
{ln(Akα − k′) + βV (k′)} (9)

1Think of a farmer who can either eat corn now or sow it to get more corn next year.
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We will solve this equation by value function iteration. Before that, we will see the intuition

behind this procedure by looking at a simple case of finding a fixed point for a function in R.

2.1 A note on convergence of contraction mappings

How do we solve the Bellman equation? First of all, notice that the Bellman equation involves a

functional, where the unknown is the function V (k).

To put the problem in perspective, consider finding a fixed point for the function f(x) = 1 +

0.5x, for x ∈ R. It is easy to see that x∗ = 2 is a fixed point:

x∗ = f(x∗) = 1 + 0.5x∗ → 0.5x∗ = 1→ x∗ = 2

Suppose we could not solve the equation x = 1 + 0.5x directly. How could we find the fixed

point then? Notice that |f ′(x)| = |0.5| < 1, so f is a contraction (that is, for all x and y, the

function satisfies |f(x) − f(y)| < |x − y|). Then, if we start from an arbitrary point, say x0, and

by iteration we form the succession xj+1 = f(xj), we will get that limj→∞ xj = x∗. For example,

pick x0 = 6:

x0 = 6

x1 = f(x0) = 1 + 6
2
= 4

x2 = f(x1) = 1 + 4
2
= 3

x3 = f(x2) = 1 + 3
2
= 2.5

x4 = f(x3) = 1 + 2.5
2

= 2.25

...

If we keep iterating, we will get arbitrarily close to the solution x∗ = 2.
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2.2 Value function iteration

Unfortunately, in equation 9 we cannot solve for V directly. However, we know that the Bellman

equation is a contraction mapping (as long as |β| < 1) that has a fixed point (its solution). Let’s

them apply the same strategy we used when looking for the fixed point of f(x) = 1 + 0.5x. That

is, let’s pick an initial guess (V0(k) = 0 is a convenient one) and them iterate over the Bellman

equation by2

Vj+1(k) = max
k′
{ln(Akα − k′) + βVj(k

′)} (10)

Starting from V0 = 0, the problem 10 becomes:

V1(k) = max
k′
{ln(Akα − k′) + β × 0}

Since the objective is decreasing on k′ and we have the restriction k′ ≥ 0, the solution is simply

to set k∗′ = 0. Then c∗ = Akα

V1(k) = ln c∗ + β × 0

= lnA+ α ln k

This completes our first iteration. Let’s now find V2 using again equation 10:

V2(k) = max
k′
{ln(Akα − k′) + β[lnA+ α ln k′]}

First order condition for the maximization problem is

1

Akα − k′
=
αβ

k′
⇒ k∗

′
=

αβ

1 + αβ
Akα =

(
1− 1

1+αβ

)
Akα

2Notice that the subscript j in this problem refers to a specific iteration in our procedure, not to the horizon of the
consumer (as in the first model).

12



Then consumption is c∗ = Akα − k∗′ =
(

1
1+αβ

)
Akα and

V2(k) = ln(c∗) + β lnA+ αβ ln k∗
′

= ln (Akα)− ln(1 + αβ) + β lnA+ αβ ln
[

αβ
1+αβ

Akα
]

= [αβ ln(αβ)− (1 + αβ) ln(1 + αβ)] + (1 + β + αβ) lnA+ α(1 + αβ) lnK

This completes the second iteration. Let’s have one more:

V3(k) = max
k′
{ln(Akα − k′) + β[φ+ α(1 + αβ) ln k′]}

where φ = [αβ ln(αβ)− (1 + αβ) ln(1 + αβ)] + (1 + β + αβ) lnA. The first order condition is

1

Akα − k′
=
αβ(1 + αβ)

k′
⇒ k∗

′
=

αβ + α2β2

1 + αβ + α2β2
Akα =

(
1− 1

1 + αβ + α2β2

)
Akα

Then consumption is c∗ = 1
1+αβ+α2β2Ak

α

You might be tired by now of iterating this function. Me too! So let’s try to find some patterns

(unless you really want to iterate to infinity). Table 1 summarizes the results for the consumption

policy function.

j c∗

1 (1)−1Akα

2 (1 + αβ)−1Akα

3 (1 + αβ + α2β2)−1Akα

Table 1: Consumption after 3 iterations

From the pattern on this table, we could guess that after j iterations, the consumption policy

would look like:

c∗j = (1 + αβ + . . .+ αjβj)−1Akα
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But remember that to converge to the fixed point, we need to iterate to infinity: so now simply

take the limit j → ∞ of the consumption function: since 0 < αβ < 1, the geometric series

converges, and so

c∗ = (1− αβ)Akα (11)

k∗
′
= αβAkα (12)

To get the value function, start from:

V (k) = max
k′
{ln(Akα − k′) + βV (k′)} (13)

The first order condition is:

1

c∗
= β

∂V (k∗
′
)

∂k′
⇒ ∂V (k∗

′
)

∂k′
=

1

βc∗

Combining equations 11 and 12 we get c∗ = 1−αβ
αβ

k∗
′ , substitute in first order condition and

solve the resulting differential equation:

∂V (k∗
′
)

∂k′
=

α

1− αβ
1

k∗′

V (k∗
′
) = α

1−αβ ln k
∗′ + ζ

where ζ is an integration constant. So we know that the value function is V (k) = α
1−αβ ln k+ζ ,
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and all is missing is to determine the coefficient ζ:

V (k) = ln c∗ + βV (k∗
′
)

α
1−αβ ln k + ζ = ln c∗ + αβ

1−αβ ln k
∗′ + βζ

= ln c∗ + αβ
1−αβ ln

[
αβ

1−αβ c
∗
]
+ βζ

= 1
1−αβ ln c

∗ + αβ
1−αβ ln

[
αβ

1−αβ

]
+ βζ

= 1
1−αβ ln(1− αβ) +

1
1−αβ lnA+ 1

1−αβ ln k
α + αβ

1−αβ ln
[

αβ
1−αβ

]
+ βζ

⇒

(1− β)ζ =
ln(1− αβ) + lnA+ αβ ln

[
αβ

1−αβ

]
1− αβ

⇒

ζ =
lnA+ αβ ln(αβ) + (1− αβ) ln(1− αβ)

(1− β)(1− αβ)
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