
Dynamic programming

Randall Romero Aguilar, PhD

EC3201 - Teoría Macroeconómica 2
II Semestre 2019

Last updated: November 14, 2019

Table of contents

1. Introduction

2. Basics of dynamic programming

3. Consumption and financial assets: infinite horizon

4. Consumption and financial assets: finite horizon

5. Consumption and physical investment

6. The McCall job search model

1. Introduction

About this lecture

I We study how to use Bellman equations to solve dynamic
programming problems.

I We consider a consumer who wants to maximize his lifetime
consumption over an infinite horizon, by optimally allocating
his resources through time. Two alternative models:

1. the consumer uses a financial instrument (say a bank deposit
without overdraft limit) to smooth consumption;

2. the consumer has access to a production technology and uses
the level of capital to smooth consumption.

I To keep matters simple, we assume:
I a logarithmic instant utility function;
I there is no uncertainty.

I To start, we review some math that we’ll need later.

©Randall Romero Aguilar, PhD EC-3201 / 2019.II 1

Static optimization

I Optimization is a predominant theme in economic analysis.
I For this reason, the classical calculus methods of finding free

and constrained extrema occupy an important place in the
economist’s everyday tool kit.

I Useful as they are, such tools are applicable only to static
optimization problems.

I The solution sought in such problems usually consists of a
single optimal magnitude for every choice variable.

I It does not call for a schedule of optimal sequential action.

©Randall Romero Aguilar, PhD EC-3201 / 2019.II 2

Dynamic optimization

I In contrast, a dynamic optimization problem poses the
question of what is the optimal magnitude of a choice variable
in each period of time within the planning period.

I It is even possible to consider an infinite planning horizon.
I The solution of a dynamic optimization problem would thus

take the form of an optimal time path for every choice
variable, detailing the best value of the variable today,
tomorrow, and so forth, till the end of the planning period.

©Randall Romero Aguilar, PhD EC-3201 / 2019.II 3

Basic ingredients

A simple type of dynamic optimization problem would contain the
following basic ingredients:

1. a given initial point and a given terminal point;
2. a set of admissible paths from the initial point to the terminal

point;
3. a set of path values serving as performance indices (cost,

profit, etc.) associated with the various paths; and
4. a specified objective-either to maximize or to minimize the

path value or performance index by choosing the optimal path.

©Randall Romero Aguilar, PhD EC-3201 / 2019.II 4

Alternative approaches to dynamic optimization

To find the optimal path, there are three major approaches:

Calculus of varia-
tions
Dating back to the
late 17th century,
it works about vari-
ations in the state
path.

Optimal control
theory
The problem is
viewed as having
both a state and
a control path,
focusing on varia-
tions of the control
path.

Dynamic pro-
gramming
Which embeds the
control problem
in a family of
control problems,
focusing on the
optimal value of
the problem (value
function).

©Randall Romero Aguilar, PhD EC-3201 / 2019.II 5

Salient features of dynamic optimization problems

I Although dynamic optimization is mostly couched in terms of
a sequence of time, it is also possible to envisage the planning
horizon as a sequence of stages in an economic process.

I In that case, dynamic optimization can be viewed as a
problem of multistage decision making.

I The distinguishing feature, however, remains the fact that the
optimal solution would involve more than one single value for
the choice variable.

©Randall Romero Aguilar, PhD EC-3201 / 2019.II 6

2. Basics of dynamic programming

The principle of optimality

The dynamic programming approach is based on the principle of
optimality (Bellman, 1957)

An optimal policy has the property that, whatever the ini-
tial state and decision are, the remaining decisions must
constitute an optimal policy with regard to the state re-
sulting from the first decision.

©Randall Romero Aguilar, PhD EC-3201 / 2019.II 7

Why dynamic programming?

Dynamic programming is a very attractive method for solving
dynamic optimization problems because
I it offers backward induction, a method that is particularly

amenable to programmable computers, and
I it facilitates incorporating uncertainty in dynamic optimization

models.

©Randall Romero Aguilar, PhD EC-3201 / 2019.II 8

Dynamic Programming: the basics

We now introduce basic ideas and methods of dynamic
programming (Ljungqvist and Sargent 2004)
I basic elements of a recursive optimization problem
I the Bellman equation
I methods for solving the Bellman equation
I the Benveniste-Scheikman formula

©Randall Romero Aguilar, PhD EC-3201 / 2019.II 9

Sequential problems

I Let β ∈ (0, 1) be a discount factor.
I We want to choose an infinite sequence of “controls” {xt}∞t=0

to maximize
∞∑
t=0

βtr(st, xt) (1)

subject to st+1 = g(st, xt), with s0 ∈ R given.
I We assume that r(st, xt) is a concave function and that the

set {(st+1, st) : st+1 ≤ g(st, xt), xt ∈ R} is convex and
compact.

©Randall Romero Aguilar, PhD EC-3201 / 2019.II 10

Dynamic programming seeks a time-invariant policy function h
mapping the state st into the control xt, such that the sequence
{xt}∞t=0 generated by iterating the two functions

xt = h(st)

st+1 = g(st, xt)

starting from initial condition s0 at t = 0, solves the original
problem. A solution in the form of equations is said to be recursive.

©Randall Romero Aguilar, PhD EC-3201 / 2019.II 11

To find the policy function h we need to know the value function
V (s), which expresses the optimal value of the original problem,
starting from an arbitrary initial condition s ∈ S. Define

V (s0) = max
{xt}∞t=0

∞∑
t=0

βtr(st, xt)

subject to st+1 = g(st, xt), with s0 given.
We do not know V (s0) until after we have solved the problem, but
if we knew it the policy function h could be computed by solving
for each s ∈ S the problem

max
x

{
r(s, x) + βV (s′)

}
, s.t. s′ = g(s, x) (2)

©Randall Romero Aguilar, PhD EC-3201 / 2019.II 12

Thus, we have exchanged the original problem of finding an infinite
sequence of controls that maximizes expression (1) for the problem
of finding the optimal value function V (s) and a function h that
solves the continuum of maximum problems (2) —one maximum
problem for each value of s.
The function V (s), h(s) are linked by the Bellman equation

V (s) = max
x

{r(s, x) + βV [g(s, x)]} (3)

The maximizer of the RHS is a policy function h(s) that satisfies

V (s) = r[s, h(s)] + βV {g[s, h(s)]} (4)

This is a functional equation to be solved for the pair of unknown
functions V (s), h(s).

©Randall Romero Aguilar, PhD EC-3201 / 2019.II 13

Some properties

Under various particular assumptions about r and g, it turns out
that

1. The Bellman equation has a unique strictly concave solution.
2. This solution is approached in the limit as j → ∞ by

iterations on

Vj+1(s) = max
x

{r(s, x) + βVj(s
′)}, s.t. s′ = g(s, x), s given

starting from any bounded and continuous initial V0.
3. There is a unique and time-invariant optimal policy of the

form xt = h(st), where h is chosen to maximize the RHS of
the Bellman equation.

4. Off corners, the limiting value function V is differentiable.

©Randall Romero Aguilar, PhD EC-3201 / 2019.II 14

Side note:
Banach Fixed-Point Theorem

Concave functions

I A real-valued function f on an interval (or, more generally, a
convex set in vector space) is said to be concave if, for any x
and y in the interval and for any t ∈ [0, 1],

f((1− t)x+ ty) ≥ (1− t)f(x) + tf(y)

I A function is called strictly concave if

f((1− t)x+ ty) > (1− t)f(x) + tf(y)

for any t ∈ (0, 1) and x 6= y.

©Randall Romero Aguilar, PhD EC-3201 / 2019.II 15

Concave functions (cont’n)

For a function f : R 7→ R,
this definition merely states
that for every z between x
and y, the point (z, f(z)) on
the graph of f is above the
straight line joining the points
(x, f(x)) and (y, f(y)).

x

f(x)

y

f(y)

(1− t)f(x) + tf(y)

©Randall Romero Aguilar, PhD EC-3201 / 2019.II 16

Fixed points

I A point x∗ is a
fixed-point of function f
if it satisfies f(x∗) = x∗.

I Notice that
f(f(. . . f(x∗) . . .)) =
x∗.

f

x

y = x

x∗0

x∗1

©Randall Romero Aguilar, PhD EC-3201 / 2019.II 17

Contraction mappings

A mapping f : X 7→ X
from a metric space X into
itself is said to be a strong
contraction with modulus δ,
if 0 ≤ δ < 1 and

d(f(x), f(y)) ≤ δd(x, y)

for all x and y in X.

f

t

f(t)

|x− y|

|f(x)− f(y)|

x y

©Randall Romero Aguilar, PhD EC-3201 / 2019.II 18

Banach Fixed-Point Theorem

If f is a strong contraction on a metric space X, then
I it possesses an unique fixed-point x∗, that is f(x∗) = x∗

I if x0 ∈ X and xi+1 = f(xi), then the xi converge to x∗

Proof: Use x0 and x∗ in the definition of a strong contraction:

d(f(x0), f(x∗)) ≤ δd(x0, x
∗) ⇒

d(x1, x∗) ≤ δd(x0, x
∗) ⇒

d(xk, x∗) ≤ δkd(x0, x
∗) → 0 as k → ∞

©Randall Romero Aguilar, PhD EC-3201 / 2019.II 19

Example 1:
Searching a fixed point by function
iteration

I Consider finding a fixed point for the function
f(x) = 1 + 0.5x, for x ∈ R.

I It is easy to see that x∗ = 2 is a fixed point:

f(x∗) = f(2) = 1 + 0.5(2) = 2 = x∗

I Suppose we could not solve the equation x = 1 + 0.5x
directly. How could we find the fixed point then?

I Notice that |f ′(x)| = |0.5| < 1, so f is a contraction.

©Randall Romero Aguilar, PhD EC-3201 / 2019.II 20

By Banach Theorem, if we start from an arbitrary point x0 and by
iteration we form the sequence xj+1 = f(xj), it follows that
limj→∞ xj = x∗.

For example, pick:

x0 = 6

x1 = f(x0) = 1 + 6
2 = 4

x2 = f(x1) = 1 + 4
2 = 3

x3 = f(x2) = 1 + 3
2 = 2.5

x4 = f(x3) = 1 + 2.5
2 = 2.25

...

f

x

f(t)

x0

If we keep iterating, we will get arbitrarily close to the solution
x∗ = 2.

©Randall Romero Aguilar, PhD EC-3201 / 2019.II 21

First-order necessary condition

Starting with the Bellman equation

V (s) = max
x

{r(s, x) + βV [g(s, x)]}

Since the value function is differentiable, the optimal x∗ ≡ h(s)
must satisfy the first-order condition

rx(s, x
∗) + βV ′{g(s, x∗)}gx(s, x∗) = 0 (FOC)

©Randall Romero Aguilar, PhD EC-3201 / 2019.II 22

Envelope condition

According to (4): V (s) = r[s, h(s)] + βV {g[s, h(s)]}
If we also assume that the policy function h(s) is differentiable,
differentiation of this expression yields

V ′(s) = rs[s, h(s)] + rx[s, h(s)]h
′(s)

+ βV ′{g[s, h(s)]}
{
gs[s, h(s)] + gx[s, h(s)]h

′(s)
}

Arranging terms, substituting x∗ = h(s) as the optimal policy

V ′(s) = rs(s, x
∗) + βV ′[g(s, x∗)]gs(s, x

∗)

+
{
rx[s, x

∗] + βV ′{g[s, x∗]}gx[s, x∗]
}
h′(s)

©Randall Romero Aguilar, PhD EC-3201 / 2019.II 23

Envelope condition (cont’n)

The highlighted part cancels out because of (FOC), therefore

V ′(s) = rs(s, x
∗) + βV ′ (s′) gs(s, x∗)

Notice that we could have obtained this result much faster by
taking derivative of

V (s) = r(s, x∗) + βV [g(s, x∗)]

with respect to the state variable s as if the control variable
x∗ ≡ h(s) did not depend on s.

©Randall Romero Aguilar, PhD EC-3201 / 2019.II 24

Benveniste and Scheinkman formula

In the envelope condition

V ′(s) = rs(s, x
∗) + βV ′ (s′) gs(s, x∗)

when the states and controls can be defined in such a way that
only x appears in the transition equation, i.e.,

s′ = g(x) ⇒ gs(s, x
∗) = 0,

the derivative of the value function becomes

V ′(s) = rs[s, h(s)] (B-S)

This is a version of a formula of Benveniste and Scheinkman.

©Randall Romero Aguilar, PhD EC-3201 / 2019.II 25

Euler equations

I In many problems, there is no unique way of defining states
and controls

I When the states and controls can be defined in such a way
that s′ = g(x), the (FOC) for the Bellman equation together
with the (B-S) formula implies

rx(st, xt) + βrs(st+1, xt+1)g
′(xt) = 0

I This equation is called an Euler equation.
I If we can write xt as a function of st+1, we can use it to

eliminate xt from the Euler equation to produce a
second-order difference equation in st.

©Randall Romero Aguilar, PhD EC-3201 / 2019.II 26

Solving the Bellman equation

I In those cases in which we want to go beyond the Euler
equation to obtain an explicit solution, we need to find the
solution V of the Bellman equation (3)

I Given V , it is straightforward to solve (3) successively to
compute the optimal policy.

I However, for infinite-horizon problems, we cannot use
backward iteration.

©Randall Romero Aguilar, PhD EC-3201 / 2019.II 27

Three computational methods

I There are three main types of computational methods for
solving dynamic programs. All aim to solve the Bellman
equation
I Guess and verify
I Value function iteration
I Policy function iteration

I Each method is easier said than done: it is typically
impossible analytically to compute even one iteration.

I Usually we need computational methods for approximating
solutions: pencil and paper are insufficient.

©Randall Romero Aguilar, PhD EC-3201 / 2019.II 28

Example 2:
Computer solution of DP models

There are several computer programs available for solving dynamic
programming models:
I The CompEcon toolbox, a MATLAB toolbox accompanying

Miranda and Fackler (2002) textbook.
I The PyCompEcon toolbox, my (still incomplete) Python

version of Miranda and Fackler toolbox.
I Additional examples are available at quant-econ, a website by

Sargent and Stachurski with Python and Julia scripts.

©Randall Romero Aguilar, PhD EC-3201 / 2019.II 29

https://mitpress.mit.edu/books/applied-computational-economics-and-finance
http://randall-romero.com/code/compecon/
http://lectures.quantecon.org/

Guess and verify

I This method involves guessing and verifying a solution V to
the Bellman equation.

I It relies on the uniqueness of the solution to the equation
I because it relies on luck in making a good guess, it is not

generally available.

©Randall Romero Aguilar, PhD EC-3201 / 2019.II 30

Value function iteration

I This method proceeds by constructing a sequence of value
functions and associated policy functions.

I The sequence is created by iterating on the following equation,
starting from V0 = 0, and continuing until Vj has converged:

Vj+1(s) = max
x

{r(s, x) + βVj [g(s, x)]}

©Randall Romero Aguilar, PhD EC-3201 / 2019.II 31

Policy function iteration

This method, also known as Howard’s improvement algorithm,
consists of the following steps:

1. Pick a feasible policy, x = h0(s), and compute the value
associated with operating forever with that policy:

Vhj
(s) =

∞∑
t=0

βtr[st, hj(st)]

where st+1 = g[st, hj(st)], with j = 0.
2. Generate a new policy x = hj+1(s) that solves the two-period

problem
max
x

{r(s, x) + βVhj
[g(s, x)]}

for each s.
3. Iterate over j to convergence on steps 1 and 2.

©Randall Romero Aguilar, PhD EC-3201 / 2019.II 32

Stochastic control problems

I We modify the transition equation and consider the problem
of maximizing

E0

∞∑
t=0

βtr(st, xt) s.t. st+1 = g(st, xt, ϵt+1) (5)

with s0 given at t = 0

I ϵt is a sequence of i.i.d. r.v. : P[ϵt ≤ e] = F (e) for all t
I ϵt+1 is realized at t+ 1, after xt has been chosen at t.
I At time t:

I st is known
I st+j is unknown (j ≥ 1)

©Randall Romero Aguilar, PhD EC-3201 / 2019.II 33

I The problem is to choose a policy or contingency plan
xt = h(st). The Bellman equation is

V (s) = max
x

{
r(s, x) + β E[V

(
s′
)
| s]

}
I where s′ = g(s, x, ϵ),
I and E{V (s′) |s} =

∫
V (s′) dF (ϵ)

I The solution V (s) of the B.E. can be computed by value
function iteration.

©Randall Romero Aguilar, PhD EC-3201 / 2019.II 34

I The FOC for the problem is

rx(s, x) + β E
{
V ′ (s′) gx(s, x, ϵ) | s} = 0

I When the states and controls can be defined in such a way
that s does not appear in the transition equation,

V ′(s) = rs[s, h(s)]

I Substituting this formula into the FOC gives the stochastic
Euler equation

rx(s, x) + β E
{
rs(s

′, x′)gx(s, x, ϵ) | s
}
= 0

©Randall Romero Aguilar, PhD EC-3201 / 2019.II 35

3. Consumption and financial assets: infinite
horizon

Consumption and financial assets

To ilustrate how dynamic programming works, we consider a
intertemporal consumption problem.

©Randall Romero Aguilar, PhD EC-3201 / 2019.II 36

The consumer

I Planning horizon: infinite
I Instant utility depends on current consumption: u(ct)

I Constant utility discount rate β ∈ (0, 1)

I Lifetime utility is:

U(c0, c1, . . .) =

∞∑
t=0

βtu(ct)

I The problem: choosing the optimal sequence of values {c∗t }
that will maximize U , subject to a budget constraint.

©Randall Romero Aguilar, PhD EC-3201 / 2019.II 37

A savings model

The consumer
I is endowed with A0 units of the consumption good,
I does not have income
I can save in a bank deposit, which yields a interest rate r.

The budget constraint is

At+1 = R(At − ct)

where R ≡ 1 + r is the gross interest rate.

©Randall Romero Aguilar, PhD EC-3201 / 2019.II 38

The value function

I Once he chooses the sequence {c∗t }∞t=0 of optimal
consumption, the maximum utility that he can achieved is
ultimately constraint only by his initial assets A0.

I So define the value function V as the maximum utility the
consumer can get as a function of his initial assets

V (A0) = max
{ct,At+1}∞t=0

∞∑
t=0

βtu(ct)

subject to At+1 = R(At − ct)

©Randall Romero Aguilar, PhD EC-3201 / 2019.II 39

The consumer problem

Consumer problem:

V (A0) = max
{ct,At+1}∞t=0

∞∑
t=0

βtu(ct) (objective)

At+1 = R(At − ct) ∀t = 0, 1, 2, . . .
(budget constraint)

©Randall Romero Aguilar, PhD EC-3201 / 2019.II 40

Dealing with the intertemporal budget constraint
Notice that we have a budget constraint for every time period t.
So we form the Lagrangean

V (A0) = max
{ct,At+1}∞t=0

∞∑
t=0

βtu(ct) +

∞∑
t=0

λt[R(At − ct)−At+1]

= max
{ct,At+1}∞t=0

∞∑
t=0

{
βtu(ct) + λt[R(At − ct)−At+1]

}
Instead of dealing with the constraints explicitly, we can just
substitute ct = At −At+1/R in all time periods:

= max
{At+1}∞t=0

∞∑
t=0

βtu

At −
At+1

R
ct


So, we choose consumption implicitly by choosing the path of
assets.
©Randall Romero Aguilar, PhD EC-3201 / 2019.II 41

A recursive approach to solving the problem
Keeping in mind that ct = At −At+1/R

V (A0) = max
{At+1}∞t=0

∞∑
t=0

βtu(ct)

= max
{At+1}∞t=0

{
u(c0) +

∞∑
t=1

βtu(ct)

}

= max
{At+1}∞t=0

{
u(c0) + β

∞∑
t=1

βt−1u(ct)

}
“An optimal policy has the property that, whatever the initial state and decision are,
the remaining decisions must constitute an optimal policy with regard to the state
resulting from the first decision.”

= max
A1

{
u(c0) + β max

{At+2}∞t=0

∞∑
t=0

βtu(ct+1)

}
= max

A1

{u(c0) + βV (A1)}

©Randall Romero Aguilar, PhD EC-3201 / 2019.II 42

The Bellman equation

Bellman equation

V (A) = max
c, A′

{
u(c) + βV (A′) + λ[R(A− c)−A′]

}

I This says that the maximum lifetime utility the consumer can
get must be equal to the sum of current utility plus the
discounted value of the lifetime utility he will get starting next
period.

©Randall Romero Aguilar, PhD EC-3201 / 2019.II 43

Three ways to write the Bellman equation

I Explicitly writing down the budget constraint (BC):

V (A) = max
c, A′

{
u(c) + βV (A′) + λ[R(A− c)−A′]

}
I Using the BC to substitute future assets:

V (A) = max
c

{u(c) + βV [R(A− c)]}

I Using the BC to substitute consumption:

V (A) = max
A′

{
u

(
A− A′

R

)
+ βV (A′)

}

©Randall Romero Aguilar, PhD EC-3201 / 2019.II 44

Obtaining the Euler equation
The problem is

V (A) = max
A′

{
u

(
A− A′

R

)
+ βV (A′)

}
so the FOCs is

−u′(c)

R
+ βV ′(A′) = 0 ⇒ u′(c) = βRV ′(A′)

The envelope condition is:

V ′(A) = u′(c),which implies that V ′(A′) = u′(c′)

Substituting into the FOC we get the:
Euler equation

u′(c) = βRu′(c′)

©Randall Romero Aguilar, PhD EC-3201 / 2019.II 45

Obtaining the Euler equation, second way

The Lagrangian for this problem is

V (A) = max
c, A′

{
u(c) + βV (A′) + λ[R(A− c)−A′]

}
so the FOCs are

u′(c) = λR

βV ′(A′) = λ

}
⇒ u′(c) = βRV ′(A′)

and the envelope condition is

V ′(A) = λR = u′(c)

which implies that

V ′(A′) = u′(c′) ⇒ u′(c) = βRu′(c′)

©Randall Romero Aguilar, PhD EC-3201 / 2019.II 46

(Not quite) obtaining the Euler equation

The problem is

V (A) = max
c

{u(c) + βV [R(A− c)]}

so the FOCs is
u′(c)− βRV ′(A′) = 0

but in this case the envelope condition is not useful:

V ′(A) = βRV ′(A′)

©Randall Romero Aguilar, PhD EC-3201 / 2019.II 47

The Euler equation

Euler equation

u′(c) = βRu′(c′)

I This says that at the optimum, if the consumer gets one more
unit of the good, he must be indifferent between consuming it
now (getting u′(c)) or saving it (which increases next-period
assets by R) an consuming it later, getting a discounted value
of βRu′(c′).

I Notice that this is the say result we found on Lecture 8
(Applications of consumer theory), in the two-period
intertemporal consumption problem!

©Randall Romero Aguilar, PhD EC-3201 / 2019.II 48

Solving the Euler equation

Notice that the Euler equation can be written

u′
(
At −

At+1

R

)
= βRu′

(
At+1 −

At+2

R

)
which is a second-order nonlinear difference equation. In principle,
it can be solved to obtain the
Policy function

c∗t = h(At) consumption function
At+1 = R[At − h(At)] asset accumulation

©Randall Romero Aguilar, PhD EC-3201 / 2019.II 49

4. Consumption and financial assets: finite
horizon

The consumer

I Planning horizon: T (possibly infinite)
I Instant utility depends on current consumption: u(ct) = ln ct

I Constant utility discount rate β ∈ (0, 1)

I Lifetime utility is:

U(c0, c1, . . . , cT) =

T∑
t=0

βt ln ct

I The problem: choosing the optimal values c∗t that will
maximize U , subject to a budget constraint.

©Randall Romero Aguilar, PhD EC-3201 / 2019.II 50

A savings model

In this first model, the consumer
I is endowed with A0 units of the consumption good,
I does not have income
I can save in a bank deposit, which yields a interest rate r.

The budget constraint is

At+1 = R(At − ct)

where R ≡ 1 + r is the gross interest rate.

©Randall Romero Aguilar, PhD EC-3201 / 2019.II 51

The value function

I Once he chooses the sequence {c∗t }Tt=0 of optimal
consumption, the maximum utility that he can achieved is
ultimately constraint only by his initial assets A0 and by how
many periods he lives T + 1.

I So define the value function V as the maximum utility the
consumer can get as a function of his initial assets

V0(A0) = max
{ct}

T∑
t=0

βt ln c∗t

subject to At+1 = R(At − ct)

©Randall Romero Aguilar, PhD EC-3201 / 2019.II 52

The consumer problem

Consumer problem:

V0(A0) = max
{c,A}

T∑
t=0

βt ln ct (objective)

At+1 = R(At − ct) ∀t = 0, . . . , T
(budget constraint)

AT+1 ≥ 0 (leave no debts)

©Randall Romero Aguilar, PhD EC-3201 / 2019.II 53

A time τ Bellman equation
Since the consumer problem is recursive, consider the value
function for time t = τ

Vτ (Aτ) = max
{At+1}Tt=τ

T∑
t=τ

βt−τ ln ct

= max
{At+1}Tt=τ

{
ln cτ +

T∑
t=τ+1

βt−τ ln ct

}

= max
{At+1}Tt=τ

{
ln cτ + β

T∑
t=τ+1

βt−(τ+1) ln ct

}
Using Bellman optimality condition

= max
Aτ+1

{
ln cτ + β max

{At+1}Tt=τ+1

T∑
t=τ+1

βt−(τ+1) ln ct

}
= max

Aτ+1

{ln cτ + βVτ+1(Aτ+1)}

©Randall Romero Aguilar, PhD EC-3201 / 2019.II 54

Solving the time τ Bellman equation
With finite time horizon, the value function of one period depends
on the value function for next period:

Vτ (Aτ) = max
Aτ+1

{ln cτ + βVτ+1(Aτ+1)}

Keeping in mind that cτ = Aτ −Aτ+1/R, the FOC is

−1

Rcτ
+ βV ′

τ+1(Aτ+1) = 0 ⇒ 1 = RβcτV
′
τ+1(Aτ+1)

So this problem can be solved by:
Time τ solution:

1 = RβcτV
′
τ+1(Aτ+1) (first-order condition)

Aτ+1 = R(Aτ − cτ) (budget constraint)

We now solve the problem for special cases t = T , t = T − 1,
t = T − 2. Then we generalize for T = ∞.
©Randall Romero Aguilar, PhD EC-3201 / 2019.II 55

Solution when t = T

In this case, consumer problem is simply

VT (AT) = max
cT ,AT+1

{ln cT } subject to

AT+1 = R(AT − cT), AT+1 ≥ 0

We need to find cT and AT+1. Substitute cT = AT − AT+1

R in the
objective function:

max
AT+1

ln
[
AT − AT+1

R

]
subject to AT+1 ≥ 0

This function is strictly decreasing on AT+1, so we set AT+1 to
its minimum possible value; given the transversality constraint we
set AT+1 = 0, which implies cT = AT and VT (AT) = lnAT . In
words, in his last period a consumer spends his entire assets.

©Randall Romero Aguilar, PhD EC-3201 / 2019.II 56

Solution when t = T − 1

The problem is now

VT−1(AT−1) = max
AT

{ln cT−1 + βVT (AT)}

Its solution, since we know that VT (AT) = lnAT , is given by:{
1 = RβcT−1V

′
T (AT)

AT = R(AT−1 − cT−1)
⇒

{
AT = RβcT−1

AT = R(AT−1 − cT−1)

It follows that

c∗T−1 =
1

1+βAT−1 ⇒ A∗
T = Rβ

1+βAT−1

©Randall Romero Aguilar, PhD EC-3201 / 2019.II 57

The value function is

VT−1(AT−1) = ln c∗T−1 + βVT (A
∗
T)

= ln c∗T−1 + β lnA∗
T

= ln c∗T−1 + β ln[Rβc∗T−1]

= (1 + β) ln c∗T−1 + β lnβ + β lnR

=
(1 + β) lnAT−1 − (1 + β) ln(1 + β) + . . .

· · ·+ β lnβ + β lnR

= (1 + β) lnAT−1 + θT−1

where the term θT−1 is just a constant.

©Randall Romero Aguilar, PhD EC-3201 / 2019.II 58

Solution when t = T − 2

The problem is now

VT−2(AT−2) = max
AT−1

{ln cT−2 + βVT−1(AT−1)}

Its solution, since we know that
VT−1(AT−1) = (1 + β) lnAT−1 + θT−1, is given by:

{
1 = RβcT−2V

′
T−1(AT−1)

AT−1 = R(AT−2 − cT−2)
⇒

{
AT−1 = Rβ(1 + β)cT−2

AT−1 = R(AT−2 − cT−2)

It follows that

c∗T−2 =
1

1+β+β2AT−2 ⇒ A∗
T−1 =

R(β+β2)
1+β+β2 AT−2

©Randall Romero Aguilar, PhD EC-3201 / 2019.II 59

The value function is

VT−2(AT−2) = ln c∗T−2 + βVT−1(A
∗
T−1)

= ln c∗T−2 + β[(1 + β) ln(A∗
T−1) + θT−1]

= ln c∗T−2 + (β + β2) ln[R(β + β2)c∗T−2] + βθT−1

=
(1 + β + β2) ln c∗T−2 + (β + β2)[lnR+ . . .

· · ·+ ln(β + β2)] + βθT−1

= (1 + β + β2) lnAT−2 + θT−2

where
θT−2 = (β+2β2) lnR+(β+2β2) lnβ− (1+β+β2) ln(1+β+β2)

©Randall Romero Aguilar, PhD EC-3201 / 2019.II 60

Solution when t = T − k

If we keep iterating, the problem is now

VT−k(AT−k) = max
AT−k+1

{ln cT−k + βVT−k+1(AT−k+1)}

Its solution, is given by:{
1 = RβcT−kV

′
T−k+1(AT−k+1)

AT−k+1 = R(AT−k − cT−k)

But since we do not know VT−k+1(AT−k+1), we cannot substitute
just yet, unless we solve for all intermediate steps. Instead of doing
that, we will search for patterns in our results.

©Randall Romero Aguilar, PhD EC-3201 / 2019.II 61

Searching for patterns

Let’s summarize the results for the policy function.

t c∗t A∗
t+1

T AT 0AT

T −1
1

1+βAT−1 Rβ 1
1+βAT−1

T −2
1

1+β+β2AT−2 Rβ 1+β
1+β+β2AT−2

We could guess that after k iterations:

T −k
1

1+β+···+βkAT−k Rβ 1+β+···+βk−1

1+β+···+βk AT−k

=
1− β

1− βk+1
AT−k Rβ

1− βk

1− βk+1
AT−k

©Randall Romero Aguilar, PhD EC-3201 / 2019.II 62

The time path of assets

Since AT−k+1 = Rβ 1−βk

1−βk+1AT−k, setting k = T, T − 1:

A1 = Rβ
1− βT

1− βT+1
A0

A2 = Rβ
1− βT−1

1− βT
A1

= (Rβ)2
1− βT−1

1− βT+1
A0

Iterating in this fashion we find that

At = (Rβ)t
1− βT+1−t

1− βT+1
A0

©Randall Romero Aguilar, PhD EC-3201 / 2019.II 63

The time path of consumption

Since c∗T−k = 1−β
1−βk+1AT−k, setting t = T − k we get consumption

c∗t =
1− β

1− βT+1−t
At

=
1− β

1− βT+1−t

[
(Rβ)t

1− βT+1−t

1− βT+1
A0

]
= (Rβ)t

1− β

1− βT+1
A0

ϕ

That is
ln c∗t = t ln(Rβ) + lnϕ

©Randall Romero Aguilar, PhD EC-3201 / 2019.II 64

The time 0 value function
Substitution of the optimal consumption path in the Bellman
equation give the value function

V0(A0) ≡
T∑
t=0

βt ln c∗t =

T∑
t=0

βt (t ln(Rβ) + lnϕ)

= ln(Rβ)
T∑
t=0

βtt+ lnϕ

T∑
t=0

βt

=
β

1− β

(
1− βT

1− β
− TβT

)
ln(Rβ) +

1− βT+1

1− β
lnϕ

=

β

1− β

(
1− βT

1− β
− TβT

)
ln(Rβ) + . . .

+
1− βT+1

1− β
ln 1− β

1− βT+1
+

1− βT+1

1− β
lnA0

©Randall Romero Aguilar, PhD EC-3201 / 2019.II 65

From finite horizon to infinite horizon
Our results so far are

At = (Rβ)t
1− βT+1−t

1− βT+1
A0 c∗t = (Rβ)t

1− β

1− βT+1
A0

V0(A0) =
β

1− β

(
1− βT

1− β
− TβT

)
ln(Rβ)+

1− βT+1

1− β
ln 1− β

1− βT+1
+
1− βT+1

1− β
lnA0

Taking the limit as T → ∞

At = (Rβ)tA0 c∗t = (Rβ)t(1− β)A0 = (1− β)At

V0(A0) =
1

1− β
lnA0 +

β lnR+ β lnβ + (1− β) ln(1− β)

(1− β)2

©Randall Romero Aguilar, PhD EC-3201 / 2019.II 66

The policy function

Policy function

c∗t = (1− β)At consumption function
At+1 = RβAt asset accumulation

I This says that the optimal consumption rule is, in every
period, to consume a fraction 1− β of available initial assets.

I Over time, assets will increase, decrease or remain constant
depending on how the degree of impatience β compares to
reward to postpone consumption R.

©Randall Romero Aguilar, PhD EC-3201 / 2019.II 67

Time-variant value function

Now let’s summarize the results for the value function:

t Vt(A)

T lnA
T − 1 (1 + β) lnA+ θT−1

T − 2 (1 + β + β2) lnA+ θT−2
...

0 1

1− β
lnA+

β

1− β

(
1− βT

1− β
− TβT

)
ln(Rβ) +

1

1− β
ln 1− β

1− βT+1

Notice that the value function changes each period, but only
because each period the remaining horizon becomes one period
shorter.
©Randall Romero Aguilar, PhD EC-3201 / 2019.II 68

Time-invariant value function

Remember that in our k iteration,

VT−k(AT−k) = max
cT−k,

AT−k+1

{ln cT−k + βVT−k+1(AT−k+1)}

With an infinite horizon, the remaining horizon is the same in
T − k and in T − k+1, so the value function is the same, precisely
the fixed-point of the Bellman equation. Then we can write

V (AT−k) = max
cT−k,

AT−k+1

{ln cT−k + βV (AT−k+1)}

or simply
V (A) = max

c,A′

{
ln c+ βV (A′)

}
where a prime indicates a next-period variable

©Randall Romero Aguilar, PhD EC-3201 / 2019.II 69

The first order condition

Using the budget constraint to substitute consumption

V (A) = max
A′

{
ln

(
A− A′

R

)
+ βV (A′)

}
we obtain the FOC:

1 = RβcV ′(A′)

Despite not knowing V , we can determine its first derivative using
the envelope condition.Thus, from

V (A) = ln
(
A− A′∗

R

)
+ βV (A′∗)

we get
V ′(A) =

1

c

©Randall Romero Aguilar, PhD EC-3201 / 2019.II 70

The Euler condition

I Because the solution is time-invariant, V ′(A) = 1
c implies that

V ′(A′) = 1
c′ .

I Substitute this into the FOC to obtain the
Euler equation

1 = Rβ
c

c′
= Rβ

u′(c′)

u′(c)

I This says that the marginal rate of substitution of
consumption between any consecutive periods u′(c)

βu′(c′) must
equal the relative price of the later consumption in terms of
the earlier consumption R.

©Randall Romero Aguilar, PhD EC-3201 / 2019.II 71

Value function iteration

I Suppose we wanted to solve the infinite horizon problem

V (A) = max
c,A′

{
ln c+ βV (A′)

}
subject to A′ = R(A− c)

by value function iteration:

Vj+1(A) = max
c,A′

{
ln c+ βVj(A

′)
}

subject to A′ = R(A− c)

I If we start iterating from V0(A) = 0 , our iterations would
look identical to the procedure we used to solve for the finite
horizon problem!

©Randall Romero Aguilar, PhD EC-3201 / 2019.II 72

I Then, our iterations would look like
j Vj(A)

0 0
1 lnA
2 (1 + β) lnA+ θ2
3 (1 + β + β2) lnA+ θ3

...
I If we keep iterating, we would expect that the coefficient on

lnA would converge to 1 + β + β2 + · · · = 1
1−β

I However, it is much harder to see a pattern on the θj
sequence.

I Then, we could try now the guess and verify, guessing that
the solution takes the form V (A) = 1

1−β lnA+ θ.

©Randall Romero Aguilar, PhD EC-3201 / 2019.II 73

Guess and verify

I Our guess: V (A) = 1
1−β lnA+ θ

I Solution must satisfy the FOC: 1 = RβcV ′(A′) and budget
constraint A′ = R(A− c).

I Combining these conditions we find c∗ = (1− β)A and
A′∗ = RβA.

I To be a solution of the Bellman equation, it must be the case
that both sides are equal:

©Randall Romero Aguilar, PhD EC-3201 / 2019.II 74

LHS RHS
V (A) ln c∗ + βV (A′∗)

1
1−β lnA+ θ

= ln(1− β)A+ β
[

lnA′∗

1−β + θ
]

= ln(1− β)A+ β
[

lnRβA
1−β + θ

]
= 1

1−β lnA+ β
1−β lnRβ + ln(1− β) + βθ

The two sides are equal if and only if

θ = β
1−β lnRβ + ln(1− β) + βθ

That is, if

θ =
β lnR+ β lnβ + (1− β) ln(1− β)

(1− β)2

©Randall Romero Aguilar, PhD EC-3201 / 2019.II 75

Why the envelope condition works?

The last point in our discussion is to justify the envelope condition:
deriving V (A) pretending that A′∗ did not depend on A. But we
know it does, so write A′∗ = h(A) for some function h. From the
definition of the value function write:

V (A) = ln
[
A− h(A)

R

]
+ βV (h(A))

Take derivative and arrange terms:

V ′(A) =
1

c

[
1− h′(A)

R

]
+ βV ′(h(A))h′(A)

=
1

c
+

[
−1

cR
+ βV ′(A′∗)

]
h′(A)

but the term in square brackets must be zero from the FOC.

©Randall Romero Aguilar, PhD EC-3201 / 2019.II 76

5. Consumption and physical investment

A model with production

In this model
I the consumer is endowed with k0 units of a good that can be

used either for consumption or for the production of additional
good

I we refer to “capital” to the part of the good that is used for
future production

I capital fully depreciates with the production process.
I The lifetime utility of the consumer is again

U(c0, c1, . . . , c∞) =
∑∞

t=0 β
t ln ct,

I The production function is y = Akα, where A > 0 and
0 < α < 1 are parameters.

I The budget constraint is ct + kt+1 = Akαt .

©Randall Romero Aguilar, PhD EC-3201 / 2019.II 77

The consumer problem

Consumer problem:

V (k0) = max
{ct,kt+1}∞t=0

∞∑
t=0

βt ln ct (objective)

kt+1 = Akαt − ct (resource constraint)

©Randall Romero Aguilar, PhD EC-3201 / 2019.II 78

The Bellman equation

I In this case, the Bellman equation is

V (k0) = max
c0,k1

{ln c0 + βV (k1)}

I Substitute the constraint c0 = Akα0 − k1 in the BE. To
simplify notation, we drop the time index and use a prime (as
in k′) to denote “next period” variables. Then, BE is

V (k) = max
k′

{
ln(Akα − k′) + βV (k′)

}
I We will solve this equation by value function iteration.

©Randall Romero Aguilar, PhD EC-3201 / 2019.II 79

The Euler equation
Remember that u(c) = ln c, y = f(k) = Akα, so Bellman equation
can be written as:

V (k) = max
k′

{
u
(
f(k)− k′

)
+ βV (k′)

}
we get the FOC u′(c) = βV ′(k′) and the envelope condition
V ′(k) = u′(c)f ′(k)

Euler equation

u′(c) = βf ′(k′)u′(c′)

Notice how this result is similar to the one we got in the savings
model: the return for giving up one unit of current consumption is:

savings model: R = 1 + r, the gross interest rate.
physical capital model: f ′(k′), the marginal product of capital.
©Randall Romero Aguilar, PhD EC-3201 / 2019.II 80

Solving Bellman equation by function iteration

I How do we solve the Bellman equation?

V (k) = max
k′

{
ln(Akα − k′) + βV (k′)

}
I This equation involves a functional, where the unknown is the

function V (k).
I Unfortunately, we cannot solve for V directly.
I However, this equation is a contraction mapping (as long as

|β| < 1) that has a fixed point (its solution).
I Let’s pick an initial guess (V0(k) = 0 is a convenient one) and

them iterate over the Bellman equation by*

Vj+1(k) = max
k′

{
ln(Akα − k′) + βVj(k

′)
}

*The j subscript refers to an iteration, not to the horizon.©Randall Romero Aguilar, PhD EC-3201 / 2019.II 81

Starting from V0 = 0, the problem becomes:

V1(k) = max
k′

{
ln(Akα − k′) + β × 0

}
Since the objective is decreasing on k′ and we have the restriction
k′ ≥ 0, the solution is simply k′∗ = 0. Then c∗ = Akα

V1(k) = ln c∗ + β × 0

= ln (Akα)

= lnA+ α ln k

This completes our first iteration. Let’s now find V2:

V2(k) = max
k′

{
ln(Akα − k′) + β[lnA+ α ln k′]

}

©Randall Romero Aguilar, PhD EC-3201 / 2019.II 82

FOC is
1

Akα − k′
=

αβ

k′
⇒ k′∗ =

αβ

1 + αβ
Akα = θ1Ak

α

Then consumption is c∗ = (1− θ1)Ak
α = 1

1+αβAk
α and

V2(k) = ln(c∗) + β lnA+ αβ ln k′∗

= ln(1− θ1) + ln(Akα) + β[lnA+ α ln θ1 + α ln(Akα)]
= (1 + αβ) ln(Akα) + β lnA+ [ln(1− θ1) + αβ ln θ1]

= (1 + αβ) ln(Akα) + ϕ2

This completes the second iteration.

©Randall Romero Aguilar, PhD EC-3201 / 2019.II 83

Let’s have one more:

V3(k) = max
k′

{
ln(Akα − k′) + β[(1 + αβ) ln(Ak′α) + ϕ2]

}
The FOC is

1

Akα − k′
=

αβ(1 + αβ)

k′

k′∗ =
αβ + α2β2

1 + αβ + α2β2
Akα = θ2Ak

α

Then consumption is c∗ = (1− θ2)Ak
α = 1

1+αβ+α2β2Ak
α

After substitution of c∗ and k′∗ into the Bellman equation (and a
lot of cumbersome algebra):

V3(k) = ln(c∗) + β[(1 + αβ) ln(Ak′∗α) + ϕ2]

= (1 + αβ + α2β2) ln(Akα) + ϕ3

This completes the third iteration.
©Randall Romero Aguilar, PhD EC-3201 / 2019.II 84

Searching for patterns

You might be tired by now of iterating this function. Me too! So
let’s try to find some patterns (unless you really want to iterate to
infinity). Let’s summarize the results for the value function.

j V (k)

1 (1) ln (Akα)
2 (1 + αβ) ln (Akα) + ϕ2

3 (1 + αβ + α2β2) ln (Akα) + ϕ3

From this table, we could guess that after j iterations, the
consumption policy would look like:

Vj(k) = (1 + αβ + . . .+ αjβj) ln (Akα) + ϕj

©Randall Romero Aguilar, PhD EC-3201 / 2019.II 85

Iterating to infinity

I To converge to the fixed point, we need to iterate to infinity.
I Simply take the limit j → ∞ of the value function: since

0 < αβ < 1, the geometric series converges, and so

V (k) = 1
1−αβ ln (Akα) + Φ

I Notice that we did not formally prove that the ϕj sequence
actually converges (so far we are just assuming it does.)

©Randall Romero Aguilar, PhD EC-3201 / 2019.II 86

Solving by guess and verify
I So far, we have not actually solved the Bellman equation, but

the pattern we found allow us to guess that the value function
is V (k) = 1

1−αβ ln (Akα) + Φ, where Φ is an unknown
coefficient.

I We are now going to verify that this function is the solution,
finding the value of Φ

I This is called the method of undetermined coefficients.
I In this case, the Bellman equation is

V (k) = max
k′

{
ln(Akα − k′) + β

1−αβ ln
(
Ak′α

)
+ βΦ

}
I FOC is

1

Akα − k′
=

αβ

(1− αβ)k′
⇒

{
k′∗ = αβAkα = αβy

c∗ = (1− αβ)Akα = (1− αβ)y

©Randall Romero Aguilar, PhD EC-3201 / 2019.II 87

Substitute in the Bellman equation is

V (k) = ln c∗ + β
1−αβ ln

(
Ak′α

)
+ βΦ

1
1−αβ ln(Akα) + Φ = ln [(1− αβ)y] + β

1−αβ ln [A (αβy)α] + βΦ

=
(
1 + αβ

1−αβ

)
ln y + ln(1− αβ) + β ln[A(αβ)α]

1−αβ + βΦ

= 1
1−αβ ln y + (1−αβ) ln(1−αβ)+β ln[A(αβ)α]

1−αβ + βΦ

Therefore

(1− β)Φ= (1−αβ) ln(1−αβ)+β ln[A(αβ)α]
1−αβ

Φ =
β lnA+ ln (αβ)αβ + ln(1− αβ)(1−αβ)

(1− β)(1− αβ)

©Randall Romero Aguilar, PhD EC-3201 / 2019.II 88

Finally, the policy and value functions are given by

k′∗(k) = αβAkα

c∗(k) = (1− αβ)Akα

V (k) =
1

1− αβ
ln (Akα) + β lnA+ln(αβ)αβ+ln(1−αβ)(1−αβ)

(1−β)(1−αβ)

©Randall Romero Aguilar, PhD EC-3201 / 2019.II 89

Notice that, had we solved the problem in terms of the state
variable y = Akα, the policy and value functions would be

k′∗(y) = αβy

c∗(y) = (1− αβ)y

V (y) =
1

1− αβ
ln y + β lnA+ln(αβ)αβ+ln(1−αβ)(1−αβ)

(1−β)(1−αβ)

©Randall Romero Aguilar, PhD EC-3201 / 2019.II 90

6. The McCall job search model

Overview

I The McCall search model :cite:‘McCall1970‘ helped transform
economists’ way of thinking about labor markets.

I To clarify vague notions such as ”involuntary” unemployment,
McCall modeled the decision problem of unemployed agents
directly, in terms of factors such as
I current and likely future wages
I impatience
I unemployment compensation

I To solve the decision problem he used dynamic programming.
I Here we set up McCall’s model and adopt the same solution

method.
I As we’ll see, McCall’s model is not only interesting in its own

right but also an excellent vehicle for learning dynamic
programming.

©Randall Romero Aguilar, PhD EC-3201 / 2019.II 91

The McCall Model

I An unemployed worker receives in each period a job offer at
wage Wt.

I At time t, our worker has two choices:
1. Accept the offer and work permanently at constant wage Wt.
2. Reject the offer, receive unemployment compensation c, and

reconsider next period.
I The wage sequence is assumed to be IID with probability

mass function ϕ.
I Thus ϕ(w) is the probability of observing wage offer w in the

set {w1, . . . , wn}.

©Randall Romero Aguilar, PhD EC-3201 / 2019.II 92

The McCall Model (cont’n)

I The worker is infinitely lived and aims to maximize the
expected discounted sum of earnings

E
∞∑
t=0

βtYt

I The constant β lies in (0, 1) and is called a discount factor.
I The variable Yt is income, equal to

I his wage Wt when employed
I unemployment compensation c when unemployed

©Randall Romero Aguilar, PhD EC-3201 / 2019.II 93

A Trade-Off

I The worker faces a trade-off:
I Waiting too long for a good offer is costly, since the future is

discounted.
I Accepting too early is costly, since better offers might arrive in

the future.
I To decide optimally in the face of this trade-off, we use

dynamic programming.
I Dynamic programming can be thought of as a two-step

procedure that
1. first assigns values to ”states” and
2. then deduces optimal actions given those values

I We’ll go through these steps in turn.

©Randall Romero Aguilar, PhD EC-3201 / 2019.II 94

The Value Function

I In order to optimally trade-off current and future rewards, we
need to think about two things:

1. the current payoffs we get from different choices
2. the different states that those choices will lead to in next

period (in this case, either employment or unemployment)
I To weigh these two aspects of the decision problem, we need

to assign values to states.
I To this end, let V (w) be the total lifetime value accruing to

an unemployed worker who enters the current period
unemployed but with wage offer w in hand.

I More precisely, V (w) denotes the value of the objective
function when an agent in this situation makes optimal
decisions now and at all future points in time.

©Randall Romero Aguilar, PhD EC-3201 / 2019.II 95

The Value Function (cont’n)

I Of course V (w) is not trivial to calculate because we don’t
yet know what decisions are optimal and what aren’t!

I But think of V as a function that assigns to each possible
wage w the maximal lifetime value that can be obtained with
that offer in hand.

I A crucial observation is that this function V must satisfy the
recursion

V (w) = max
{

w

1− β
, c+ β

∑
w′

V (w′)ϕ(w′)

}

for every possible w in {w1, . . . , wn}.
I This important equation is a version of the Bellman equation,

which is ubiquitous in economic dynamics and other fields
involving planning over time.

©Randall Romero Aguilar, PhD EC-3201 / 2019.II 96

The Value Function (cont’n)

V (w) = max
{

w

1− β
, c+ β

∑
w′

V (w′)ϕ(w′)

}

I The intuition behind it is as follows:
1. the first term inside the max operation is the lifetime payoff

from accepting current offer w, since

w + βw + β2w + · · · = w

1− β

2. the second term inside the max operation is the continuation
value, which is the lifetime payoff from rejecting the current
offer and then behaving optimally in all subsequent periods

I If we optimize and pick the best of these two options, we
obtain maximal lifetime value from today, given current offer
w.

I But this is precisely V (w), which is the l.h.s. of the Bellman
equation.

©Randall Romero Aguilar, PhD EC-3201 / 2019.II 97

The Optimal Policy

I Suppose for now that we are able to solve the Bellman
equation for the unknown function V .

I Once we have this function in hand we can behave optimally
(i.e., make the right choice between accept and reject).

I All we have to do is select the maximal choice on the r.h.s. of
the Bellman equation.

I The optimal action is best thought of as a policy, which is, in
general, a map from states to actions.

I In our case, the state is the current wage offer w.

©Randall Romero Aguilar, PhD EC-3201 / 2019.II 98

The Optimal Policy (cont’n)

I Given any w, we can read off the corresponding best choice
(accept or reject) by picking the max on the r.h.s. of the
Bellman equation.

I Thus, we have a map from R to {0, 1}, with 1 meaning
accept and 0 meaning reject.

I We can write the policy as follows

σ(w) := 1
{

w

1− β
≥ c+ β

∑
w′

V (w′)ϕ(w′)

}

I Here 1{P} = 1 if statement P is true and equals 0 otherwise.

©Randall Romero Aguilar, PhD EC-3201 / 2019.II 99

The Reservation Wage

I We can also write the policy function as

σ(w) := 1{w ≥ w̄}

where

w̄ := (1− β)

{
c+ β

∑
w′

V (w′)ϕ(w′)

}
I Here w̄ is a constant depending on β, c and the wage

distribution called the reservation wage.
I The agent should accept if and only if the current wage offer

exceeds the reservation wage.
I Clearly, we can compute this reservation wage if we can

compute the value function.

©Randall Romero Aguilar, PhD EC-3201 / 2019.II 100

Computing the Optimal Policy

I Solving this model requires numerical methods, which are
beyond the scope of this course.

I Those interested in this topic should take a look at
https://python.quantecon.org/mccall_model.html

I Indeed, the notes on this section on the McCall search model
where taken from this website, which is part of the
https://quantecon.org/ website by Sargent and
Stachurski.

©Randall Romero Aguilar, PhD EC-3201 / 2019.II 101

https://python.quantecon.org/mccall_model.html
https://quantecon.org/

References I

Chiang, Alpha C. (1992). Elements of Dynamic Optimization.
McGraw-Hill, Inc.

Ljungqvist, Lars and Thomas J. Sargent (2004). Recursive
Macroeconomic Theory. 2nd ed. MIT Press. isbn: 0-262-12274-X.

Miranda, Mario J. and Paul L. Fackler (2002). Applied Computational
Economics and Finance. MIT Press. isbn: 0-262-13420-9.

Romero-Aguilar, Randall (2016). CompEcon-Python. url:
http://randall-romero.com/code/compecon/.

Sargent, Thomas J. and John Stachurski (2016). Quantitative
Economics. url: http://lectures.quantecon.org/.

©Randall Romero Aguilar, PhD EC-3201 / 2019.II 102

http://randall-romero.com/code/compecon/
http://lectures.quantecon.org/

