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Introduction

» Markov processes are an indispensable ingredient of DSGE
models.

P They preserve the recursive structure that these models inherit
from their deterministic relatives.

» In this lecture we review a few results about these processes
that we will need repeatedly in the modeling of business
cycles.
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1. Stochastic process



Stochastic Process

A stochastic process is a time sequence of random variables
Y32 oo

Two types of processes:

Continuous if realizations are taken from an interval of the real
line Y; € [a,b] CR.
Discrete if there is a countable number of realizations
Y € {y1,92, - Yn}
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i.i.d. Stochastic Process

> The elements of a stochastic process are identically and
independently distributed (iid for short), if the probability
distribution is the same for each member of the process Z;
and independent of the realizations of other members of the
process.

» In this case

PYi =y, Yo=vyo,...,.Yr =yr| =
P(Y1 =y1) x P(Ya = 12) x --- x P(Y7 = yr)
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Unconditional moments

» Unconditional cumulative distribution function

Fy, (y) =P[Y;: <y

» Unconditional expectation (mean)

e = E (V) =/ y dFy, (v)
» Unconditional variance
2 o 2
o =B - ) = [ () 4By )
—00

» Autocovariance
vie = B (Vs — pe) (Yeej — pe—j)

©Randall Romero Aguilar, PhD EC-3201 / 2019.11 4



Stationarity

If neither the mean 1; nor the autocovariances v;; depend on the
date ¢, then the process for Z; is said to be covariance-stationary
or weakly stationary:

E(Y;) =pu for all ¢
E(Y;—p) (Yiej —p) = for all t and any j
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Example 1:
Stationary and nonstationary
processes



Suppose Y; is a stochastic process such that Y; ~ N (uy, 0?)

Stationary because p; and o2 are constant.
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Nonstationary because p; is changing over time.
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» The basic building block for the processes considered in this
lecture is a sequence {¢;} whose elements have mean zero and
variance o2,

E(e:) =0 (zero mean)
E(ef) = o? (constant variance)
E (ete;) =0 fort #7 (uncorrelated terms)

» If the terms are normally distributed
€ ~ N(0,0?)

then we have the Gaussian white noise process.
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2. The first-order autoregressive process



Definition of a AR(1) process

» A first-order autoregression, denoted AR(1), satisfies the
following difference equation:

Yi=c+ oY1 +e

where {€;} is a white noise sequence.
» It is stationary if and only if |¢| < 1.

» In what follows, we assume the process is stationary.
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MA(o0) representation of a AR(1) process

» If the AR(1) process is stationary, it can be written

C
Y, = v + €+ P61 + dPer—o+ PPz + ...
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Conditional versus unconditional mean

» The conditional mean given the previous observation is
E[Y: |Yio1] = c+ ¢Yi

» The unconditional mean is
c

1-9¢

» Since ¢ = (1 — ¢)p, the AR(1) process can be written as
deviations from ‘equilibrium’

p=EY] =

Yi—n= (Y1 — 1) + &
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Impulse-response

» Starting with Y;_1, the value of Y,y will be
Vigs—p = ¢ (YVic1i—p)+ ¢ e+0° e+ - A derrs_1ters

» Suppose that starting in ‘equilibrium’ (Y;—1 — . = 0) there is
a time-t transitory shock (e, = v) but no more shocks
thereafter (€,41 = -+ = ;45 = 0). Then

Yips —p=o°v

» This is known as an impulse-response function.

» Notice that the process will return to equilibrium as long as
lp| < 1.
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Conditional versus unconditional variance

» The conditional variance given the previous observation is
Var[Y; | Yii] = Varle + ¢¥i1 + | Yi1] = o?

» The unconditional mean is

o2

Yo = Var[}/t] == 1_7¢2

» Notice that g > Var[Y; | Y;_1]
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Autocovariance and autocorrelation

» The autocovariance is given by

> The autocorrelation is given by

p;=d¢ (j=12,...)
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Example 2:
Realizations of an AR(1) process



3
>
:

s A
STl " s

The three processes are build from the same white noise realization. Notice how
process becomes more persistent as ¢ approaches 1.

©Randall Romero Aguilar, PhD EC-3201 / 2019.II 15



3. Markov chains



Markov property

A stochastic process {Z;}2°, has the Markov property if for all
k>1 and all ¢,

PlZii1| Zt, Zi—1, - .-, Zi—i) = Pl Zis1 | Z4)

That is, the the probability distribution of Z;11 only depends upon
the realization of Z;.
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Example 3:
AR(1) process



>

| 2

The process is a Markov process:
Ziy1 = (1= p)Z + pZi + e

where p € [0,1), and €;41 ~ iidN(0,02?) is a
process.
, next period'’s variable Z;y; is normally distributed
with:
mean: E(Zt+1 | Zt) ( )Z T pZt
variance: Var(Zi41|Z;) =
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Markov Chains

Markov chains are discrete valued Markov processes. They are
characterized by three objects:

1. The n different realizations of Z, represented by the column

vector z = [z1,29,...,2n]"
2. The probability distribution of the initial date ¢ =0,
7o = [7o1, T02, - - -, Ton)', Where mo; = P[Zy = z;].

3. The transition matrix P = (p;;), where
pij = P[Zi11 = zj | Z¢ = 2], representing the dynamics of the
process.

Notice that
> Dij >0 and Z?:lpij =1.
> 0 > 0 and Z?:l Ty — 1.
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Example 4:
Unemployment



A worker can either be employed or unemployed:
» If unemployed, she will get a job with probability p = 45%
> |If employed, she will lose her job with probability ¢ = 5%
The worker is employed at ¢ = 0. Then the Markov chain is:

outcomes {unemployed, employed} or z = [(1)]
L . 0
initial probability my = 1l

1
transition probability P = {

-p D
1—g¢q

0.55 0.45
0.05 0.95

0.45

0.55 CQ/—\

0.05

o
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Example 5:
Credit ratings



Transition of the credit ratings from one year to the next:

‘ AAA AA A BBB BB B CCC D N.R.
AAA | 90.34 5.62 0.39 0.08 0.03 0 0 0 3.5
AA 0.64 88.78 6.72 0.47 0.06 0.09 0.02 0.01 3.21
A 0.07 216 87.94 4.97 0.47 0.19 0.01 0.04 4.16
BBB 0.03 0.24 456 84.26 4.19 0.76 0.15 0.22 5.59
BB 0.03 0.06 0.4 6.09 76.09 6.82 0.96 0.98 8.58
B 0 0.09 0.29 0.41 511 74.62 3.43 53 10.76
CCC 0.13 0 0.26 0.77 1.66 8.93 53.19 2194 13.14
D 0 0 0 0 1 3.1 9.29 51.29 37.32
N.R. 0 0 0 0 0 0.1 8.55 T74.06 17.07

Transition probabilities are expressed in %.

» Higher ratings are more stable: the diagonal coefficients of the

matrix go decreasing.

» Starting from the rating AA it is easier to be downgraded

(probability 6.72%) than to be upgraded (probability 0.64%).
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This figure shows a simulation of a bond rating, assuming that it
starts as a AAA bond.

N.R.1q

E @ a
- a
2 >88 w80

EEN AAA  EEN AA  EEN A EEN BB MEN BB EEN B mem CCC EEN D mm NR.

0 5 10 15 20 25

Figure below shows the evolution of the unconditional distribution
(to be studied later).
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Transition over multiple periods

» The transition matrix is also called a stochastic matrix.

» It defines the probabilities of moving from one value of the
state to another in one period.

» The probability of moving from one value of the state to
another in two periods is determined by P2 because

]P[Zt+2 = Zj|Zt = Zi]

n
= PlZiy2 = 2| Zis1 = 2] X P[Zis1 = 24| Z1 = 2]
h=1

z": Py = P2
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The unconditional distribution

The probability distribution of Z; evolves according to m;_ ; = m;P.

Therefore ) = mhP
Ty = THP?
7, = myP"

The limit for k — oo is the time invariant, stationary, or ergodic
distribution of the Markov chain. It is defined by

7=rP & ([I-P)ir=0

The limit exist and is independent of the initial distribution mg if

pg?) > 0 for some integer k£ > 1.
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Example 6:
Unemployment (cont.)



For the worker who can either be employed or unemployed
according to Markov matrix

p_[t-p » ]_[055 045
| ¢ 1-gq|  ]005 095

the stationary distribution [a: 1— az}, is the solution to:

{3 e o o R e R

0.1
_ : e :
Then z = s and the stationary distribution is: 0.9]. This

means that the long run probability of being unemployed is 10%.
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This figure shows a simulation of the employment status, assuming
that g = [1,0]/ (that is, the worker is unemployed in period t = 0)

employed

unemployed 4

B unemployed ~ =EE employed

0.8

0.6 1

0.4+

0.24

0.0~
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Example 7:
Business Cycle



Using monthly data on US unemployment, Hamilton estimated this
stochastic matrix

0.971 0.029 0.000
P =10.145 0.778 0.077
0.000 0.508 0.492

where the states are { “normal growth”, “mild recession”, “severe
recession” }
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The transition matrix can also be represented by:

971

778

029 077 492

Nt

145 508
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To find the stationary distribution:

1 0 0] [0.971 0.145 0.000 z 0
0 1 0 — (0029 0.778 0.508 y — |0
0 0 1] [0.000 0077 0492]) |[1—2z—y| |0
0.020 —0.145 00001 [ =« ] [0]
—0.029 0222 —0.508 y — |0
0.000 —0.077 0508 | |[1—z—y| |0

» We need only two of the equations (system is linearly
dependent).

» From first equation, we conclude that

0.0292 = 0.145y = = = 5y
» From last one, —0.077y + 0.508(1 — 6y) = 0 = y = 0.16256
» Thus, the stationary distribution is:

0.81280
m = |0.16256
0.02464
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This figure shows a simulation of the business cycle, assuming that
/ o .
Ty = [0, 0, 1} (economy starts in a severe recession).
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