Markov processes

Randall Romero Aguilar, PhD

EC3201 - Teoría Macroeconómica 2 II Semestre 2019 Last updated: October 31, 2019

- 1. Stochastic process
- 2. The first-order autoregressive process
- 3. Markov chains

- Markov processes are an indispensable ingredient of DSGE models.
- They preserve the recursive structure that these models inherit from their deterministic relatives.
- In this lecture we review a few results about these processes that we will need repeatedly in the modeling of business cycles.

1. Stochastic process

A stochastic process is a time sequence of random variables $\{Y_t\}_{t=-\infty}^{\infty}$.

Two types of processes:

Continuous if realizations are taken from an interval of the real line $Y_t \in [a, b] \subseteq \mathbb{R}$.

Discrete if there is a countable number of realizations $Y_t \in \{y_1, y_2, \dots, y_n\}.$

► The elements of a stochastic process are identically and independently distributed (iid for short), if the probability distribution is the same for each member of the process Z_t and independent of the realizations of other members of the process.

In this case

$$\mathbb{P}[Y_1 = y_1, Y_2 = y_2, \dots, Y_T = y_T] =$$

$$\mathbb{P}(Y_1 = y_1) \times \mathbb{P}(Y_2 = y_2) \times \dots \times \mathbb{P}(Y_T = y_T)$$

Unconditional moments

Unconditional cumulative distribution function

 $F_{Y_t}(y) = \mathbb{P}\left[Y_t \le y\right]$

Unconditional expectation (mean)

$$\mu_{t} \equiv \mathbb{E}\left(Y_{t}\right) = \int_{-\infty}^{\infty} y \, \mathrm{d}F_{Y_{t}}\left(y\right)$$

Unconditional variance

$$\gamma_{0t} \equiv \mathbb{E} \left(Y_t - \mu_t \right)^2 = \int_{-\infty}^{\infty} \left(y - \mu_t \right)^2 \, \mathrm{d}F_{Y_t} \left(y \right)$$

Autocovariance

$$\gamma_{jt} \equiv \mathbb{E} \left(Y_t - \mu_t \right) \left(Y_{t-j} - \mu_{t-j} \right)$$

©Randall Romero Aguilar, PhD

UCR EC-3201 / 2019.II

If neither the mean μ_t nor the autocovariances γ_{jt} depend on the date t, then the process for Z_t is said to be covariance-stationary or weakly stationary:

$$\mathbb{E} (Y_t) = \mu \qquad \text{ for all } t$$

$$\mathbb{E} (Y_t - \mu) (Y_{t-j} - \mu) = \gamma_j \qquad \text{ for all } t \text{ and any } j$$

Example 1: Stationary and nonstationary processes Suppose Y_t is a stochastic process such that $Y_t \sim N(\mu_t, \sigma_t^2)$

• The basic building block for the processes considered in this lecture is a sequence $\{\epsilon_t\}$ whose elements have mean zero and variance σ^2 ,

$$\mathbb{E}(\epsilon_t) = 0 \qquad (\text{zero mean})$$
$$\mathbb{E}(\epsilon_t^2) = \sigma^2 \qquad (\text{constant variance})$$
$$\mathbb{E}(\epsilon_t \epsilon_\tau) = 0 \quad \text{for } t \neq \tau \qquad (\text{uncorrelated terms})$$

If the terms are normally distributed

$$\epsilon_t \sim N(0, \sigma^2)$$

then we have the Gaussian white noise process.

2. The first-order autoregressive process

A first-order autoregression, denoted AR(1), satisfies the following difference equation:

$$Y_t = c + \phi Y_{t-1} + \epsilon_t$$

where $\{\epsilon_t\}$ is a white noise sequence.

- It is stationary if and only if $|\phi| < 1$.
- In what follows, we assume the process is stationary.

If the AR(1) process is stationary, it can be written

$$Y_t = \frac{c}{1-\phi} + \epsilon_t + \phi \epsilon_{t-1} + \phi^2 \epsilon_{t-2} + \phi^3 \epsilon_{t-3} + \dots$$

The conditional mean given the previous observation is

$$\mathbb{E}[Y_t \mid Y_{t-1}] = c + \phi Y_{t-1}$$

The unconditional mean is

$$\mu \equiv \mathbb{E}[Y_t] = \frac{c}{1-\phi}$$

Since c = (1 − φ)µ, the AR(1) process can be written as deviations from 'equilibrium'

$$Y_t - \mu = \phi(Y_{t-1} - \mu) + \epsilon_t$$

Starting with Y_{t-1} , the value of Y_{t+s} will be

$$Y_{t+s}-\mu = \phi^{s+1}(Y_{t-1}-\mu) + \phi^s \epsilon_t + \phi^{s-1} \epsilon_{t+1} + \dots + \phi \epsilon_{t+s-1} + \epsilon_{t+s}$$

Suppose that starting in 'equilibrium' $(Y_{t-1} - \mu = 0)$ there is a time-*t* transitory shock ($\epsilon_t = \nu$) but no more shocks thereafter ($\epsilon_{t+1} = \cdots = \epsilon_{t+s} = 0$). Then

$$Y_{t+s} - \mu = \phi^s \nu$$

- ► This is known as an impulse-response function.
- Notice that the process will return to equilibrium as long as |φ| < 1.</p>

 The conditional variance given the previous observation is Var[Y_t | Y_{t-1}] = Var[c + φY_{t-1} + ε_t | Y_{t-1}] = σ²
 The unconditional mean is

$$\gamma_0 \equiv \operatorname{Var}[Y_t] = \frac{\sigma^2}{1 - \phi^2}$$

• Notice that $\gamma_0 > \operatorname{Var}[Y_t | Y_{t-1}]$

► The autocovariance is given by

$$\gamma_j = \phi^j \gamma_0 \qquad \qquad (j = 1, 2, \dots)$$

The autocorrelation is given by

$$\rho_j = \phi^j \qquad \qquad (j = 1, 2, \dots)$$

Example 2: Realizations of an AR(1) process

The three processes are build from the same white noise realization. Notice how process becomes more persistent as ϕ approaches 1.

UCR EC-3201 / 2019.II

3. Markov chains

A stochastic process $\{Z_t\}_{t=0}^\infty$ has the Markov property if for all $k\geq 1$ and all t,

$$\mathbb{P}[Z_{t+1} \mid Z_t, Z_{t-1}, \dots, Z_{t-k}] = \mathbb{P}[Z_{t+1} \mid Z_t]$$

That is, the the probability distribution of Z_{t+1} only depends upon the realization of Z_t .

Example 3: AR(1) process

The AR(1) process is a Markov process:

$$Z_{t+1} = (1-\rho)\overline{Z} + \rho Z_t + \epsilon_{t+1}$$

where $\rho \in [0,1)$, and $\epsilon_{t+1} \sim \mathrm{iid} N(0,\sigma^2)$ is a white noise process.

Given Z_t, next period's variable Z_{t+1} is normally distributed with:

mean:
$$\mathbb{E}(Z_{t+1} | Z_t) = (1 - \rho)\overline{Z} + \rho Z_t$$

variance: $\operatorname{Var}(Z_{t+1} | Z_t) = \sigma^2$

Markov chains are discrete valued Markov processes. They are characterized by three objects:

- 1. The *n* different realizations of Z_t , represented by the column vector $z = [z_1, z_2, ..., z_n]'$.
- 2. The probability distribution of the initial date t = 0, $\pi_0 = [\pi_{01}, \pi_{02}, \dots, \pi_{0n}]'$, where $\pi_{0i} = \mathbb{P}[Z_0 = z_i]$.
- 3. The transition matrix $P = (p_{ij})$, where $p_{ij} = \mathbb{P}[Z_{t+1} = z_j | Z_t = z_i]$, representing the dynamics of the process.

Notice that

•
$$p_{ij} \ge 0$$
 and $\sum_{j=1}^{n} p_{ij} = 1$.
• $\pi_{0i} \ge 0$ and $\sum_{i=1}^{n} \pi_{0i} = 1$.

Example 4: Unemployment A worker can either be employed or unemployed:

If unemployed, she will get a job with probability p = 45%If employed, she will lose her job with probability q = 5%The worker is employed at t = 0. Then the Markov chain is: outcomes {unemployed, employed} or $z = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$. initial probability $\pi_0 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$. transition probability $P = \begin{bmatrix} 1-p & p \\ q & 1-q \end{bmatrix} = \begin{bmatrix} 0.55 & 0.45 \\ 0.05 & 0.95 \end{bmatrix}$ 0.45 0.55 Ċ 0.95 0.05

Example 5: Credit ratings

	AAA	AA	А	BBB	BB	В	ССС	D	N.R.
AAA	90.34	5.62	0.39	0.08	0.03	0	0	0	3.5
AA	0.64	88.78	6.72	0.47	0.06	0.09	0.02	0.01	3.21
А	0.07	2.16	87.94	4.97	0.47	0.19	0.01	0.04	4.16
BBB	0.03	0.24	4.56	84.26	4.19	0.76	0.15	0.22	5.59
BB	0.03	0.06	0.4	6.09	76.09	6.82	0.96	0.98	8.58
В	0	0.09	0.29	0.41	5.11	74.62	3.43	5.3	10.76
CCC	0.13	0	0.26	0.77	1.66	8.93	53.19	21.94	13.14
D	0	0	0	0	1	3.1	9.29	51.29	37.32
N.R.	0	0	0	0	0	0.1	8.55	74.06	17.07

Transition of the credit ratings from one year to the next:

Transition probabilities are expressed in %.

- Higher ratings are more stable: the diagonal coefficients of the matrix go decreasing.
- Starting from the rating AA it is easier to be downgraded (probability 6.72%) than to be upgraded (probability 0.64%).

This figure shows a simulation of a bond rating, assuming that it starts as a AAA bond.

Figure below shows the evolution of the unconditional distribution (to be studied later).

Transition over multiple periods

- The transition matrix is also called a stochastic matrix.
- It defines the probabilities of moving from one value of the state to another in one period.
- The probability of moving from one value of the state to another in two periods is determined by P2 because

$$\mathbb{P}[Z_{t+2} = z_j | Z_t = z_i]$$

$$= \sum_{h=1}^n \mathbb{P}[Z_{t+2} = z_j | Z_{t+1} = z_h] \times \mathbb{P}[Z_{t+1} = z_h | Z_t = z_i]$$

$$=\sum_{h=1}^{n} P_{ih} P_{hj} = P_{ij}^{(2)}$$

The probability distribution of Z_t evolves according to $\pi'_{t+1} = \pi'_t P$. Therefore $\pi'_1 = \pi'_0 P$

$$\pi'_{2} = \pi'_{0}P^{2}$$
$$\vdots$$
$$\pi'_{k} = \pi'_{0}P^{k}$$

The limit for $k \to \infty$ is the *time invariant, stationary, or ergodic* distribution of the Markov chain. It is defined by

$$\pi' = \pi' P \quad \Leftrightarrow \quad (I - P')\pi = 0$$

The limit exist and is independent of the initial distribution π_0 if $p_{ij}^{(k)} > 0$ for some integer $k \ge 1$.

©Randall Romero Aguilar, PhD

UCR EC-3201 / 2019.II

Example 6: Unemployment (cont.) For the worker who can either be employed or unemployed according to Markov matrix

$$P = \begin{bmatrix} 1 - p & p \\ q & 1 - q \end{bmatrix} = \begin{bmatrix} 0.55 & 0.45 \\ 0.05 & 0.95 \end{bmatrix}$$

the stationary distribution $\begin{bmatrix} x & 1-x \end{bmatrix}'$ is the solution to:

$$\left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} - \begin{bmatrix} 1-p & q \\ p & 1-q \end{bmatrix} \right\} \begin{bmatrix} x \\ 1-x \end{bmatrix} = \begin{bmatrix} p & -q \\ -p & q \end{bmatrix} \begin{bmatrix} x \\ 1-x \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Then $x = \frac{q}{p+q}$ and the stationary distribution is: $\begin{bmatrix} 0.1\\0.9 \end{bmatrix}$. This means that the long run probability of being unemployed is 10%.

©Randall Romero Aguilar, PhD

UCR EC-3201 / 2019.II

This figure shows a simulation of the employment status, assuming that $\pi_0 = [1,0]'$ (that is, the worker is unemployed in period t = 0)

Example 7: Business Cycle Using monthly data on US unemployment, Hamilton estimated this stochastic matrix

$$P = \begin{bmatrix} 0.971 & 0.029 & 0.000\\ 0.145 & 0.778 & 0.077\\ 0.000 & 0.508 & 0.492 \end{bmatrix}$$

where the states are { "normal growth", "mild recession", "severe recession"}

The transition matrix can also be represented by:

To find the stationary distribution:

$$\begin{pmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} - \begin{bmatrix} 0.971 & 0.145 & 0.000 \\ 0.029 & 0.778 & 0.508 \\ 0.000 & 0.077 & 0.492 \end{bmatrix} \begin{pmatrix} x \\ y \\ 1 - x - y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
$$\begin{bmatrix} 0.029 & -0.145 & 0.000 \\ -0.029 & 0.222 & -0.508 \\ 0.000 & -0.077 & 0.508 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 - x - y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

 We need only two of the equations (system is linearly dependent).

From first equation, we conclude that
$$0.029x = 0.145y \Rightarrow x = 5y$$

- From last one, $-0.077y + 0.508(1 6y) = 0 \Rightarrow y = 0.16256$
- Thus, the stationary distribution is:

$$\pi = \begin{bmatrix} 0.81280\\ 0.16256\\ 0.02464 \end{bmatrix}$$

©Randall Romero Aguilar, PhD

This figure shows a simulation of the business cycle, assuming that $\pi_0 = [0, 0, 1]'$ (economy starts in a severe recession).

Hamilton, James M. (1994). *Time Series Analysis*. Princeton University Press. ISBN: 0-691-04289-6.

Heer, Burkhard and Alfred Maußner (2009). Dynamic General Equilibrium Modeling. Computational Methods and Applications. 2nd ed. Springer-Verlag Berlin Heidelberg. 702 pp. ISBN: 978-3-642-03148-9.

