Markov processes

Randall Romero Aguilar, PhD

EC3201 - Teoría Macroeconómica 2
 II Semestre 2019
 Last updated: October 31, 2019

Table of contents

1. Stochastic process
2. The first-order autoregressive process
3. Markov chains

Introduction

- Markov processes are an indispensable ingredient of DSGE models.
- They preserve the recursive structure that these models inherit from their deterministic relatives.
- In this lecture we review a few results about these processes that we will need repeatedly in the modeling of business cycles.

1. Stochastic process

Stochastic Process

A stochastic process is a time sequence of random variables $\left\{Y_{t}\right\}_{t=-\infty}^{\infty}$.

Two types of processes:
Continuous if realizations are taken from an interval of the real line $Y_{t} \in[a, b] \subseteq \mathbb{R}$.
Discrete if there is a countable number of realizations $Y_{t} \in\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$.

i.i.d. Stochastic Process

- The elements of a stochastic process are identically and independently distributed (iid for short), if the probability distribution is the same for each member of the process Z_{t} and independent of the realizations of other members of the process.
- In this case

$$
\begin{aligned}
& \mathbb{P}\left[Y_{1}=y_{1}, Y_{2}=y_{2}, \ldots, Y_{T}=y_{T}\right]= \\
& \quad \mathbb{P}\left(Y_{1}=y_{1}\right) \times \mathbb{P}\left(Y_{2}=y_{2}\right) \times \cdots \times \mathbb{P}\left(Y_{T}=y_{T}\right)
\end{aligned}
$$

Unconditional moments

- Unconditional cumulative distribution function

$$
F_{Y_{t}}(y)=\mathbb{P}\left[Y_{t} \leq y\right]
$$

- Unconditional expectation (mean)

$$
\mu_{t} \equiv \mathbb{E}\left(Y_{t}\right)=\int_{-\infty}^{\infty} y \mathrm{~d} F_{Y_{t}}(y)
$$

- Unconditional variance

$$
\gamma_{0 t} \equiv \mathbb{E}\left(Y_{t}-\mu_{t}\right)^{2}=\int_{-\infty}^{\infty}\left(y-\mu_{t}\right)^{2} \mathrm{~d} F_{Y_{t}}(y)
$$

- Autocovariance

$$
\gamma_{j t} \equiv \mathbb{E}\left(Y_{t}-\mu_{t}\right)\left(Y_{t-j}-\mu_{t-j}\right)
$$

Stationarity

If neither the mean μ_{t} nor the autocovariances $\gamma_{j t}$ depend on the date t, then the process for Z_{t} is said to be covariance-stationary or weakly stationary:

$$
\begin{aligned}
\mathbb{E}\left(Y_{t}\right) & =\mu & & \text { for all } t \\
\mathbb{E}\left(Y_{t}-\mu\right)\left(Y_{t-j}-\mu\right) & =\gamma_{j} & & \text { for all } t \text { and any } j
\end{aligned}
$$

Example 1:
Stationary and nonstationary processes

Suppose Y_{t} is a stochastic process such that $Y_{t} \sim N\left(\mu_{t}, \sigma_{t}^{2}\right)$

Stationary because μ_{t} and σ_{t}^{2} are constant.

Nonstationary because μ_{t} is changing over time.

Nonstationary because σ_{t}^{2} is changing over time.

White noise

- The basic building block for the processes considered in this lecture is a sequence $\left\{\epsilon_{t}\right\}$ whose elements have mean zero and variance σ^{2},

$$
\begin{aligned}
\mathbb{E}\left(\epsilon_{t}\right) & =0 \\
\mathbb{E}\left(\epsilon_{t}^{2}\right) & =\sigma^{2} \\
\mathbb{E}\left(\epsilon_{t} \epsilon_{\tau}\right) & =0 \quad \text { for } t \neq \tau
\end{aligned}
$$

(zero mean)
(constant variance)
(uncorrelated terms)

- If the terms are normally distributed

$$
\epsilon_{t} \sim N\left(0, \sigma^{2}\right)
$$

then we have the Gaussian white noise process.
2. The first-order autoregressive process

Definition of a $\operatorname{AR}(1)$ process

- A first-order autoregression, denoted $\operatorname{AR}(1)$, satisfies the following difference equation:

$$
Y_{t}=c+\phi Y_{t-1}+\epsilon_{t}
$$

where $\left\{\epsilon_{t}\right\}$ is a white noise sequence.

- It is stationary if and only if $|\phi|<1$.
- In what follows, we assume the process is stationary.

$\mathrm{MA}(\infty)$ representation of a $\mathrm{AR}(1)$ process

- If the $A R(1)$ process is stationary, it can be written

$$
Y_{t}=\frac{c}{1-\phi}+\epsilon_{t}+\phi \epsilon_{t-1}+\phi^{2} \epsilon_{t-2}+\phi^{3} \epsilon_{t-3}+\ldots
$$

Conditional versus unconditional mean

- The conditional mean given the previous observation is

$$
\mathbb{E}\left[Y_{t} \mid Y_{t-1}\right]=c+\phi Y_{t-1}
$$

- The unconditional mean is

$$
\mu \equiv \mathbb{E}\left[Y_{t}\right]=\frac{c}{1-\phi}
$$

- Since $c=(1-\phi) \mu$, the $\operatorname{AR}(1)$ process can be written as deviations from 'equilibrium'

$$
Y_{t}-\mu=\phi\left(Y_{t-1}-\mu\right)+\epsilon_{t}
$$

Impulse-response

- Starting with Y_{t-1}, the value of Y_{t+s} will be

$$
Y_{t+s}-\mu=\phi^{s+1}\left(Y_{t-1}-\mu\right)+\phi^{s} \epsilon_{t}+\phi^{s-1} \epsilon_{t+1}+\cdots+\phi \epsilon_{t+s-1}+\epsilon_{t+s}
$$

- Suppose that starting in 'equilibrium' $\left(Y_{t-1}-\mu=0\right)$ there is a time- t transitory shock ($\epsilon_{t}=\nu$) but no more shocks thereafter $\left(\epsilon_{t+1}=\cdots=\epsilon_{t+s}=0\right)$. Then

$$
Y_{t+s}-\mu=\phi^{s} \nu
$$

- This is known as an impulse-response function.
- Notice that the process will return to equilibrium as long as $|\phi|<1$.

Conditional versus unconditional variance

- The conditional variance given the previous observation is

$$
\operatorname{Var}\left[Y_{t} \mid Y_{t-1}\right]=\operatorname{Var}\left[c+\phi Y_{t-1}+\epsilon_{t} \mid Y_{t-1}\right]=\sigma^{2}
$$

- The unconditional mean is

$$
\gamma_{0} \equiv \operatorname{Var}\left[Y_{t}\right]=\frac{\sigma^{2}}{1-\phi^{2}}
$$

- Notice that $\gamma_{0}>\operatorname{Var}\left[Y_{t} \mid Y_{t-1}\right]$

Autocovariance and autocorrelation

- The autocovariance is given by

$$
\gamma_{j}=\phi^{j} \gamma_{0}
$$

$$
(j=1,2, \ldots)
$$

- The autocorrelation is given by

$$
\rho_{j}=\phi^{j} \quad(j=1,2, \ldots)
$$

Example 2:
Realizations of an $A R(1)$ process

The three processes are build from the same white noise realization. Notice how process becomes more persistent as ϕ approaches 1 .

3. Markov chains

Markov property

A stochastic process $\left\{Z_{t}\right\}_{t=0}^{\infty}$ has the Markov property if for all $k \geq 1$ and all t,

$$
\mathbb{P}\left[Z_{t+1} \mid Z_{t}, Z_{t-1}, \ldots, Z_{t-k}\right]=\mathbb{P}\left[Z_{t+1} \mid Z_{t}\right]
$$

That is, the the probability distribution of Z_{t+1} only depends upon the realization of Z_{t}.

Example 3:
$\mathrm{AR}(1)$ process

- The $\operatorname{AR}(1)$ process is a Markov process:

$$
Z_{t+1}=(1-\rho) \bar{Z}+\rho Z_{t}+\epsilon_{t+1}
$$

where $\rho \in[0,1)$, and $\epsilon_{t+1} \sim \operatorname{iid} N\left(0, \sigma^{2}\right)$ is a white noise process.

- Given Z_{t}, next period's variable Z_{t+1} is normally distributed with:

$$
\begin{aligned}
\text { mean: } & \mathbb{E}\left(Z_{t+1} \mid Z_{t}\right)=(1-\rho) \bar{Z}+\rho Z_{t} \\
\text { variance: } & \operatorname{Var}\left(Z_{t+1} \mid Z_{t}\right)=\sigma^{2}
\end{aligned}
$$

Markov Chains

Markov chains are discrete valued Markov processes. They are characterized by three objects:

1. The n different realizations of Z_{t}, represented by the column vector $z=\left[z_{1}, z_{2}, \ldots, z_{n}\right]^{\prime}$.
2. The probability distribution of the initial date $t=0$, $\pi_{0}=\left[\pi_{01}, \pi_{02}, \ldots, \pi_{0 n}\right]^{\prime}$, where $\pi_{0 i}=\mathbb{P}\left[Z_{0}=z_{i}\right]$.
3. The transition matrix $P=\left(p_{i j}\right)$, where $p_{i j}=\mathbb{P}\left[Z_{t+1}=z_{j} \mid Z_{t}=z_{i}\right]$, representing the dynamics of the process.
Notice that

- $p_{i j} \geq 0$ and $\sum_{j=1}^{n} p_{i j}=1$.
- $\pi_{0 i} \geq 0$ and $\sum_{i=1}^{n} \pi_{0 i}=1$.

Example 4:
Unemployment

A worker can either be employed or unemployed:

- If unemployed, she will get a job with probability $p=45 \%$
- If employed, she will lose her job with probability $q=5 \%$

The worker is employed at $t=0$. Then the Markov chain is:
outcomes $\{$ unemployed, employed $\}$ or $z=\left[\begin{array}{l}0 \\ 1\end{array}\right]$.
initial probability $\pi_{0}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$.
transition probability $P=\left[\begin{array}{cc}1-p & p \\ q & 1-q\end{array}\right]=\left[\begin{array}{ll}0.55 & 0.45 \\ 0.05 & 0.95\end{array}\right]$

Example 5:
Credit ratings

Transition of the credit ratings from one year to the next:

	AAA	AA	A	BBB	BB	B	CCC	D	N.R.
AAA	90.34	5.62	0.39	0.08	0.03	0	0	0	3.5
AA	0.64	88.78	6.72	0.47	0.06	0.09	0.02	0.01	3.21
A	0.07	2.16	87.94	4.97	0.47	0.19	0.01	0.04	4.16
BBB	0.03	0.24	4.56	84.26	4.19	0.76	0.15	0.22	5.59
BB	0.03	0.06	0.4	6.09	76.09	6.82	0.96	0.98	8.58
B	0	0.09	0.29	0.41	5.11	74.62	3.43	5.3	10.76
CCC	0.13	0	0.26	0.77	1.66	8.93	53.19	21.94	13.14
D	0	0	0	0	1	3.1	9.29	51.29	37.32
N.R.	0	0	0	0	0	0.1	8.55	74.06	17.07

Transition probabilities are expressed in \%.

- Higher ratings are more stable: the diagonal coefficients of the matrix go decreasing.
- Starting from the rating AA it is easier to be downgraded (probability 6.72\%) than to be upgraded (probability 0.64\%).

This figure shows a simulation of a bond rating, assuming that it starts as a AAA bond.

Figure below shows the evolution of the unconditional distribution (to be studied later).

Transition over multiple periods

- The transition matrix is also called a stochastic matrix.
- It defines the probabilities of moving from one value of the state to another in one period.
- The probability of moving from one value of the state to another in two periods is determined by P2 because

$$
\begin{aligned}
& \mathbb{P}\left[Z_{t+2}=z_{j} \mid Z_{t}=z_{i}\right] \\
& \qquad \begin{array}{l}
=\sum_{h=1}^{n} \mathbb{P}\left[Z_{t+2}=z_{j} \mid Z_{t+1}=z_{h}\right] \times \mathbb{P}\left[Z_{t+1}=z_{h} \mid Z_{t}=z_{i}\right] \\
=\sum_{h=1}^{n} P_{i h} P_{h j}=P_{i j}^{(2)}
\end{array}
\end{aligned}
$$

The unconditional distribution

The probability distribution of Z_{t} evolves according to $\pi_{t+1}^{\prime}=\pi_{t}^{\prime} P$. Therefore

$$
\begin{aligned}
\pi_{1}^{\prime} & =\pi_{0}^{\prime} P \\
\pi_{2}^{\prime} & =\pi_{0}^{\prime} P^{2} \\
\vdots & \\
\pi_{k}^{\prime} & =\pi_{0}^{\prime} P^{k}
\end{aligned}
$$

The limit for $k \rightarrow \infty$ is the time invariant, stationary, or ergodic distribution of the Markov chain. It is defined by

$$
\pi^{\prime}=\pi^{\prime} P \quad \Leftrightarrow \quad\left(I-P^{\prime}\right) \pi=0
$$

The limit exist and is independent of the initial distribution π_{0} if $p_{i j}^{(k)}>0$ for some integer $k \geq 1$.

Example 6:
Unemployment (cont.)

For the worker who can either be employed or unemployed according to Markov matrix

$$
P=\left[\begin{array}{cc}
1-p & p \\
q & 1-q
\end{array}\right]=\left[\begin{array}{ll}
0.55 & 0.45 \\
0.05 & 0.95
\end{array}\right]
$$

the stationary distribution $\left[\begin{array}{ll}x & 1-x\end{array}\right]^{\prime}$ is the solution to:

$$
\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]-\left[\begin{array}{cc}
1-p & q \\
p & 1-q
\end{array}\right]\right\}\left[\begin{array}{c}
x \\
1-x
\end{array}\right]=\left[\begin{array}{cc}
p & -q \\
-p & q
\end{array}\right]\left[\begin{array}{c}
x \\
1-x
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

Then $x=\frac{q}{p+q}$ and the stationary distribution is: $\left[\begin{array}{l}0.1 \\ 0.9\end{array}\right]$. This means that the long run probability of being unemployed is 10%.

This figure shows a simulation of the employment status, assuming that $\pi_{0}=[1,0]^{\prime}$ (that is, the worker is unemployed in period $t=0$)

Example 7:
Business Cycle

Using monthly data on US unemployment, Hamilton estimated this stochastic matrix

$$
P=\left[\begin{array}{lll}
0.971 & 0.029 & 0.000 \\
0.145 & 0.778 & 0.077 \\
0.000 & 0.508 & 0.492
\end{array}\right]
$$

where the states are \{ "normal growth", "mild recession", "severe recession"\}

The transition matrix can also be represented by:

To find the stationary distribution:

$$
\begin{gathered}
\left(\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]-\left[\begin{array}{lll}
0.971 & 0.145 & 0.000 \\
0.029 & 0.778 & 0.508 \\
0.000 & 0.077 & 0.492
\end{array}\right]\right)\left[\begin{array}{c}
x \\
y \\
1-x-y
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{ccc}
0.029 & -0.145 & 0.000 \\
-0.029 & 0.222 & -0.508 \\
0.000 & -0.077 & 0.508
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
1-x-y
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]}
\end{gathered}
$$

- We need only two of the equations (system is linearly dependent).
- From first equation, we conclude that $0.029 x=0.145 y \Rightarrow x=5 y$
- From last one, $-0.077 y+0.508(1-6 y)=0 \Rightarrow y=0.16256$
- Thus, the stationary distribution is:

$$
\pi=\left[\begin{array}{l}
0.81280 \\
0.16256 \\
0.02464
\end{array}\right]
$$

This figure shows a simulation of the business cycle, assuming that $\pi_{0}=[0,0,1]^{\prime}$ (economy starts in a severe recession).

References I

國 Hamilton, James M. (1994). Time Series Analysis. Princeton University Press. ISBN: 0-691-04289-6.
國 Heer, Burkhard and Alfred Maußner (2009). Dynamic General Equilibrium
Modeling. Computational Methods and Applications. 2nd ed. Springer-Verlag Berlin Heidelberg. 702 pp. ISBN: 978-3-642-03148-9.

