Applications of consumer theory

Randall Romero Aguilar, PhD

EC3201 - Teoría Macroeconómica 2
II Semestre 2019
Last updated: September 26, 2019

ESCUELAde
ECONOMİA
UNIVERSIDAD DE COSTARICA

Table of contents

1. The Work-Leisure Decision
2. Choice under uncertainty
3. Intertemporal consumption
4. Intertemporal consumption with uncertainty
5. The Work-Leisure Decision

The setup

- There are only two goods: consumption goods C and time.
- Barter economy: consumer exchanges work time for consumption good.
- Price of consumption is 1 .
- One hour of work is worth w units of consumption.
- Consumer is endowed with h hours, to be used in:
leisure: $l=$ time used at home
work: $N^{s}=$ time exchanged in the market (labor time)
- The time constraint for the consumer is then

$$
l+N^{s}=h
$$

which states that leisure time plus time spent working must sum to total time available.

The consumer's real disposable income

- For his work, consumer gets $w N^{s}=w(h-l)$ units of consumption good.
- Consumer also receives π units of consumption good, in the form of real dividend income.
- Consumer must pay a lump-sum tax amount T to the government.
- Therefore, the budget constraint is

$$
C=w(h-l)+\pi-T
$$

- which can also be written as

$$
C+w l=w h+\pi-T
$$

The budget constraint

The consumer's preferences

The representative consumer's preferences are defined by

$$
U(C, l)
$$

with $U(\cdot, \cdot)$ a function that is:

- increasing in both arguments,
- strictly quasiconcave, and
- twice differentiable.

Leisure, I

The consumer's problem

- The consumer's optimization problem is to choose C and l so as to maximize $U(C, l)$ subject to his or her budget constraint-that is,

$$
\max _{C, l} U(C, l) \quad \text { s.t. } \quad\left\{\begin{array}{l}
C=w(h-l)+\pi-T \\
l \leq h
\end{array}\right.
$$

- This problem is a constrained optimization problem, with the associated Lagrangian

$$
\mathcal{L}=U(C, l)+\lambda[w(h-l)+\pi-T-C]+\mu(h-l)
$$

where λ and μ are the Lagrange multipliers.

Solving the problem

- We assume that there is an interior solution to the consumer's problem where $C>0$ and $0<l$.
- This can be guaranteed by assuming that

$$
U_{C}(0, l)=\infty \quad \text { and } \quad U_{l}(C, 0)=\infty
$$

- The first-order conditions are

$$
\begin{aligned}
U_{C}(C, l)-\lambda & =0 \\
U_{l}(C, l)-\lambda w-\mu & =0 \\
w(h-l)+\pi-T-C & =0 .
\end{aligned}
$$

- Slackness conditions:

$$
\mu \geq 0 \quad h-l \geq 0 \quad \mu(h-l)=0
$$

Case 1: $l=h$ (consumer does not work!)

- For this case to be feasible, we require that $C=\pi-T>0$.
- From the first two FOCs and nonnegativity of multiplier:

$$
\begin{aligned}
U_{l}(\pi-T, h)-w U_{C}(\pi-T, h) & =\mu \geq 0 \\
& \Leftrightarrow w \leq \frac{U_{l}(\pi-T, h)}{U_{C}(\pi-T, h)}
\end{aligned}
$$

- Thus, consumer does not work if he has $\pi-T>0$, and at bundle ($\pi-T, h$) the market wage rate is less than his MRS of leisure for consumption.
- In a competitive equilibrium we cannot have $l=h$, as this would imply that nothing would be produced and $C=0$.

Leisure, I

Case 2: $\mu=0$ (consumer goes to work!)

- From the first two FOCs:

$$
\begin{aligned}
U_{l}\left(C^{*}, l^{*}\right) & =w U_{C}\left(C^{*}, l^{*}\right) \\
\Leftrightarrow w & =\frac{U_{l}\left(C^{*}, l^{*}\right)}{U_{C}\left(C^{*}, l^{*}\right)}
\end{aligned}
$$

- Thus, consumer works $N^{s^{*}}=h-l^{*}$ hours and consumes $C^{*}=w\left(h-l^{*}\right)+\pi-T$.
- At this allocation, his MRS of leisure for consumption equals the market wage rate.

A parametric example

$U(C, l)=\ln (c)+\gamma \ln (l)$

- FOC

$$
\mathrm{MRS}_{l C}=\frac{U_{l}}{U_{C}}=\frac{\frac{\gamma}{l}}{\frac{1}{C}}=\frac{\gamma C}{l}=w
$$

- Time and budget constraints:

$$
\begin{aligned}
w & =\frac{\gamma C}{h-N^{s}} \\
C & =w N^{s}+\pi-T
\end{aligned}
$$

- Then

$$
N^{s *}=\frac{w h-\gamma(\pi-T)}{(1+\gamma) w}
$$

Real Dividends or Taxes Change for the Consumer

- Assume that consumption and leisure are both normal goods.
- An increase in dividends or a decrease in taxes will then cause the consumer to increase consumption and reduce the quantity of labor supplied (increase leisure).

An Increase in the Market Real Wage Rate

- This has income and substitution effects.
- Substitution effect: the price of leisure rises, so the consumer substitutes from leisure to consumption.
- Income effect: the consumer is effectively more wealthy and, since both goods are normal, consumption increases and leisure increases.
- Conclusion: Consumption must rise, but leisure may rise or fall.

Increase in the Real Wage Rate-Income and Substitution Effects

The labor supply function

- Suppose $l(w)$ is a function that tells us how much leisure the consumer wishes to consume, given the real wage w.
- Then, the labor supply curve is given by

$$
N^{s}(w)=h-l(w)
$$

The slope of the labor supply function

- We do not know whether labor supply is increasing or decreasing in the real wage, because the effect of a wage increase on the consumer's leisure choice is ambiguous.
- Assuming that the substitution effect is larger than the income effect of a change in the real wage, labor supply increases with an increase in the real wage, and the labor supply
 schedule is upward-sloping.

Labor supply response to an increase in dividend

- An increase in nonwage disposable income shifts the labor supply curve to the left, that is, from N^{s} to N_{1}^{s}, because leisure is a normal good

The economist's problem

- You have a model with n endogenous variables \mathbf{y} and m exogenous variables \mathbf{x}, whose solution is described by $\mathbf{y}=\Psi(\mathrm{x})$.
- You have found n model conditions of the form $g(\mathbf{x}, \mathbf{y})=0$.
- Problem: How to analyze the comparative statics of the model without an explicit formula for $\Psi(\mathbf{x})$?
- Solution: compute the total derivative of g, using the chain rule.

Side note:
Gradient, Jacobian, Hessian, and total derivative

The gradient and the Hessian matrix

Let f be a function, $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, where $\mathbf{x}=\left(\begin{array}{lll}x_{1} & \cdots & x_{n}\end{array}\right)^{\prime}$. We denote the first partial derivatives of $f(\mathbf{x})$ by

$$
f_{i}(\mathbf{x})=\frac{\partial f(\mathbf{x})}{\partial x_{i}} \quad \text { and } \quad \nabla f(\mathbf{x})=\left(\begin{array}{c}
f_{1}(\mathbf{x}) \\
\vdots \\
f_{n}(\mathbf{x})
\end{array}\right)
$$

and the Hessian matrix of $f(\mathbf{x})$ by

$$
H(\mathbf{x})=\left[\begin{array}{cccc}
f_{11}(\mathbf{x}) & f_{12}(\mathbf{x}) & \ldots & f_{1 n}(\mathbf{x}) \\
f_{21}(\mathbf{x}) & f_{22}(\mathbf{x}) & \ldots & f_{2 n}(\mathbf{x}) \\
\vdots & \vdots & \ddots & \vdots \\
f_{n 1}(\mathbf{x}) & f_{n 2}(\mathbf{x}) & \ldots & f_{n n}(\mathbf{x})
\end{array}\right]
$$

The Jacobian

Let f be a function, $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$:

$$
f(\mathbf{x})=\left[\begin{array}{c}
f^{1}(\mathbf{x}) \\
\vdots \\
f^{m}(\mathbf{x})
\end{array}\right]
$$

We denote the Jacobian of $f(\mathbf{x})$ by

$$
J(\mathbf{x})=\left[\begin{array}{cccc}
f_{1}^{1}(\mathbf{x}) & f_{2}^{1}(\mathbf{x}) & \ldots & f_{n}^{1}(\mathbf{x}) \\
f_{1}^{2}(\mathbf{x}) & f_{2}^{2}(\mathbf{x}) & \ldots & f_{n}^{2}(\mathbf{x}) \\
\vdots & \vdots & \ddots & \vdots \\
f_{1}^{m}(\mathbf{x}) & f_{2}^{m}(\mathbf{x}) & \ldots & f_{n}^{m}(\mathbf{x})
\end{array}\right]=\left[\begin{array}{c}
\nabla f^{1}(\mathbf{x})^{\prime} \\
\nabla f^{2}(\mathbf{x})^{\prime} \\
\vdots \\
\nabla f^{m}(\mathbf{x})^{\prime}
\end{array}\right]
$$

A partitioned Jacobian

- Let $g(\mathbf{x}, \mathbf{y})$ be a function of vectors $\mathbf{x} \in \mathbb{R}^{m}$ and $\mathbf{y} \in \mathbb{R}^{n}$, such that $g: \mathbb{R}^{n+m} \rightarrow \mathbb{R}^{n}$.
- Think of g as a system of n nonlinear equations on n endogenous variables \mathbf{y} and m exogenous variables \mathbf{x}.
- The partial Jacobians $D g_{y}$ and $D g_{x}$ form a partition of the Jacobian:

$$
J(\mathbf{x}, \mathbf{y})=\left[D g_{y} \mid D g_{x}\right]=\left[\begin{array}{cccccccc}
g_{y_{1}}^{1} & g_{y_{2}}^{1} & \ldots & g_{y_{n}}^{1} & g_{x_{1}}^{1} & g_{x_{2}}^{1} & \ldots & g_{x_{m}}^{1} \\
g_{y_{1}}^{2} & g_{y_{2}}^{2} & \ldots & g_{y_{n}}^{2} & g_{x_{1}}^{2} & g_{x_{2}}^{2} & \ldots & g_{x_{m}}^{2} \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
g_{y_{1}}^{n} & g_{y_{2}}^{n} & \ldots & g_{y_{n}}^{n} & g_{x_{1}}^{n} & g_{x_{2}}^{n} & \ldots & g_{x_{m}}^{n}
\end{array}\right]
$$

The total derivative

- The total derivative of $g(\mathbf{x}, \mathbf{y})$ satisfies

$$
\sum_{i=1}^{n} \frac{\partial g^{k}}{\partial y_{i}} \mathrm{~d} y_{i}+\sum_{i=1}^{m} \frac{\partial g^{k}}{\partial x_{i}} \mathrm{~d} x_{i}=0, \quad \forall k=1, \ldots, n
$$

- This can be written in terms of the partitioned Jacobian:

$$
\begin{aligned}
0 & =\left[\begin{array}{cccc}
g_{y_{1}}^{1} & g_{y_{2}}^{1} & \cdots & g_{y_{n}}^{1} \\
g_{y_{1}}^{2} & g_{y_{2}}^{2} & \ldots & g_{y_{n}}^{2} \\
\vdots & \vdots & \ddots & \vdots \\
g_{y_{1}}^{n} & g_{y_{2}}^{n} & \cdots & g_{y_{n}}^{n}
\end{array}\right]\left[\begin{array}{c}
\mathrm{d} y_{1} \\
\mathrm{~d} y_{2} \\
\vdots \\
\mathrm{~d} y_{n}
\end{array}\right]+\left[\begin{array}{cccc}
g_{x_{1}}^{1} & g_{x_{2}}^{1} & \ldots & g_{x_{m}}^{1} \\
g_{x_{1}}^{1} & g_{x_{2}}^{2} & \ldots & g_{x_{m}}^{2} \\
\vdots & \vdots & \ddots & \vdots \\
g_{x_{1}}^{n} & g_{x_{2}}^{n} & \cdots & g_{x_{m}}^{n}
\end{array}\right]\left[\begin{array}{c}
\mathrm{d} x_{1} \\
\mathrm{~d} x_{2} \\
\vdots \\
\mathrm{~d} x_{m}
\end{array}\right] \\
& =D g_{y} \mathrm{~d} \mathbf{y}+D g_{x} \mathrm{~d} \mathbf{x}
\end{aligned}
$$

- Then $\mathrm{d} \mathbf{y}=-\left[D g_{y}\right]^{-1} D g_{x} \mathrm{~d} \mathbf{x}$, assuming inverse is defined.

Comparative statics in leisure-consumption model

In our leisure-consumption model, the solution required that:

$$
\begin{aligned}
g_{1}(c, l, w, \pi) & =U_{l}-w U_{c}=0 \\
g_{2}(c, l, w, \pi) & =c-w h+w l-\pi=0
\end{aligned}
$$

Therefore

$$
\begin{aligned}
0 & =\left[\begin{array}{cc}
g_{c}^{1} & g_{l}^{1} \\
g_{c}^{2} & g_{l}^{2}
\end{array}\right]\left[\begin{array}{c}
\mathrm{d} c \\
\mathrm{~d} l
\end{array}\right]+\left[\begin{array}{cc}
g_{w}^{1} & g_{\pi}^{1} \\
g_{w}^{2} & g_{\pi}^{2}
\end{array}\right]\left[\begin{array}{c}
\mathrm{d} w \\
\mathrm{~d} \pi
\end{array}\right] \\
& =\left[\begin{array}{cc}
U_{l c}-w U_{c c} & U_{l l}-w U_{c l} \\
1 & w
\end{array}\right]\left[\begin{array}{c}
\mathrm{d} c \\
\mathrm{~d} l
\end{array}\right]+\left[\begin{array}{cc}
-U_{c} & 0 \\
l-h & -1
\end{array}\right]\left[\begin{array}{c}
\mathrm{d} w \\
\mathrm{~d} \pi
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
{\left[\begin{array}{c}
\mathrm{d} c \\
\mathrm{~d} l
\end{array}\right] } & =\left[\begin{array}{cc}
U_{l c}-w U_{c c} & U_{l l}-w U_{c l} \\
1 & w
\end{array}\right]^{-1}\left[\begin{array}{cc}
U_{c} & 0 \\
h-l & 1
\end{array}\right]\left[\begin{array}{c}
\mathrm{d} w \\
\mathrm{~d} \pi
\end{array}\right] \\
& =\frac{1}{\nabla}\left[\begin{array}{cc}
w & w U_{c l}-U_{l l} \\
-1 & U_{l c}-w U_{c c}
\end{array}\right]\left[\begin{array}{cc}
U_{c} & 0 \\
h-l & 1
\end{array}\right]\left[\begin{array}{c}
\mathrm{d} w \\
\mathrm{~d} \pi
\end{array}\right] \\
& =\frac{1}{\nabla}\left[\begin{array}{cc}
w U_{c}+(h-l)\left(w U_{c l}-U_{l l}\right) & w U_{c l}-U_{l l} \\
-U_{c}+(h-l)\left(U_{l c}-w U_{c c}\right) & U_{l c}-w U_{c c}
\end{array}\right]\left[\begin{array}{c}
\mathrm{d} w \\
\mathrm{~d} \pi
\end{array}\right]
\end{aligned}
$$

where

$$
\nabla=-\left(w^{2} U_{c c}-2 w U_{c l}+U_{l l}\right)=-\left|\begin{array}{ccc}
0 & 1 & w \\
1 & U_{c c} & U_{c l} \\
w & U_{l c} & U_{l l}
\end{array}\right| \geq 0
$$

The comparative statics follows from:

$$
\begin{array}{ll}
\frac{\mathrm{d} c}{\mathrm{~d} \pi}=\frac{w U_{c l}-U_{l l}}{\nabla}>0 & (c \text { is normal }) \\
\frac{\mathrm{d} c}{\mathrm{~d} w}=\frac{w U_{c}+(h-l)\left(w U_{c l}-U_{l l}\right)}{\nabla} & >0 \\
\frac{\mathrm{~d} l}{\mathrm{~d} \pi} & =\frac{U_{l c}-w U_{c c}}{\nabla}>0 \\
& (l \text { is normal }) \\
\frac{\mathrm{d} l}{\mathrm{~d} w} & =\frac{-U_{c}+(h-l)\left(U_{l c}-w U_{c c}\right)}{\nabla}
\end{array} \quad 0 \quad \begin{array}{ll}
& ?
\end{array}
$$

2. Choice under uncertainty

Choice under uncertainty

- Until now, we have been concerned with the behavior of a consumer under conditions of certainty.
- However, many choices made by consumers take place under conditions of uncertainty.
- In this section we explore how the theory of consumer choice can be used to describe such behavior.

The choices

- The first question to ask is what is the basic "thing" that is being chosen?
- The consumer is presumably concerned with the probability distribution of getting different consumption bundles of goods.
- A probability distribution consists of a list of different outcomes-in this case, consumption bundles-and the probability associated with each outcome.
- When a consumer decides how much automobile insurance to buy or how much to invest in the stock market, he is in effect deciding on a pattern of probability distribution across different amounts of consumption.

Contingent consumption

- Let us think of the different outcomes of some random event as being different states of nature.
- A contingent consumption plan is a specification of what will be consumed in each different state of nature.
- Contingent means depending on something not yet certain.
- People have preferences over different plans of consumption, just like they have preferences over actual consumption.
- We can think of preferences as being defined over different consumption plans.

Utility functions and probabilities

- If the consumer has reasonable preferences about consumption in different circumstances, then we can use a utility function to describe these preferences.
- However, uncertainty does add a special structure to the choice problem.
- How a person values consumption in one state as compared to another will depend on the probability that the state in question will actually occur.
- For this reason, we will write the utility function as depending on the probabilities as well as on the consumption levels.

Utility with discrete random outcomes

- If there are n possible states of nature s, then c is a discrete random variable with support $\left\{c_{1}, \ldots, c_{n}\right\}$, whose values are realized with probabilities $\left\{p_{1}, \ldots, p_{n}\right\}$.

s	\mathbb{P}	c	$u(c)$
1	π_{1}	c_{1}	$u\left(c_{1}\right)$
2	π_{2}	c_{2}	$u\left(c_{2}\right)$
\vdots		\vdots	
n	π_{n}	c_{n}	$u\left(c_{n}\right)$

- Utility is

$$
U\left(c_{1}, \ldots, c_{n} ; \pi_{1}, \ldots, \pi_{n}\right)=\sum_{i=1}^{n} \pi_{i} u\left(c_{i}\right)
$$

Utility with continuous random outcomes

- If there are infinite states of nature, we think of c as a continuous random variable.
- If c has support \mathbf{C}, $\operatorname{pdf} f(c)$ and $\operatorname{cdf} F(c)$, then utility is

$$
\begin{aligned}
U(c, f) & =\int_{\mathbf{c}} f(c) u(c) \mathrm{d} c \\
& =\int_{\mathbf{c}} u(c) \mathrm{d} F(c)
\end{aligned}
$$

von Neumann-Morgenstern utility

- We refer to a utility function U with the particular form described here as an expected utility function, or, sometimes, a von Neumann-Morgenstern utility function:

$$
U(c, \mathbb{P}) \equiv \mathbb{E} u(c)= \begin{cases}\sum_{i=1}^{n} \pi_{i} u\left(c_{i}\right) & \text { discrete } \\ \int_{\mathbf{c}} u(c) \mathrm{d} F(c) & \text { continuous }\end{cases}
$$

- We refer to $u(c)$ as the Bernoulli utility function.

Growing potatoes in uncertain weather

- A farmer grows potatoes for own consumption.
- The weather s can be good or bad, affecting the amount of potatoes (real income y) he actually harvests:

s (weather)	\mathbb{P}	y
g (good)	π_{g}	W
b (bad)	π_{b}	$W-L$

- That is, if weather is bad, he loses L potatoes.
- Expected consumption of potatoes:

$$
\mathbb{E} c=\mathbb{E} y=\left(1-\pi_{b}\right) W+\pi_{b}(W-L)=W-\pi_{b} L
$$

An insurance contract

- Farmer can insure K potatoes, premium is γ per unit.
- Choices are contingent consumption plans:

s	\mathbb{P}	y	insure	c
g	π_{g}	W	$-\gamma K$	$W-\gamma K$
b	π_{b}	$W-L$	$(1-\gamma) K$	$W-\gamma K+K-L$

Expected utility of buying insurance coverage K

- Expected utility is

$$
\begin{aligned}
U\left(c_{g}, c_{b} ; \pi_{g}, \pi_{b}\right) & \equiv \mathbb{E} u(c) \\
& =\pi_{g} u\left(c_{g}\right)+\pi_{b} u\left(c_{b}\right) \\
& =\pi_{g} u(W-\gamma K)+\pi_{b} u(W-\gamma K+K-L)
\end{aligned}
$$

- MRS of bad-weather potatoes for one good-weather potato is

$$
M R S_{b g}=\frac{U_{c_{b}}}{U_{c_{g}}}=\frac{\pi_{b} u^{\prime}\left(c_{b}\right)}{\pi_{g} u^{\prime}\left(c_{g}\right)}
$$

Objective function:

$\mathbb{E} u(c)=U\left(c_{g}, c_{b}, \pi_{g}, \pi_{b}\right)=\pi_{g} u\left(c_{g}\right)+\pi_{b} u\left(c_{b}\right)$

Budget constraint $\left(c_{g}, c_{b}\right)=\left(y_{g}-\gamma K, y_{b}+(1-\gamma) K\right)$

- We have

$$
K=\frac{y_{g}-c_{g}}{\gamma}=\frac{c_{b}-y_{b}}{1-\gamma}
$$

- Therefore

$$
c_{g}+\frac{\gamma}{1-\gamma} c_{b}=y_{g}+\frac{\gamma}{1-\gamma} y_{b}
$$

- Substitute $y_{g}=W$ and $y_{b}=W-L$ to get

$$
\begin{aligned}
c_{g}+\frac{\gamma}{1-\gamma} c_{b} & =W+\frac{\gamma}{1-\gamma}(W-L) \\
& =\frac{1}{1-\gamma} W-\frac{\gamma}{1-\gamma} L
\end{aligned}
$$

- The relative price (in terms of potatoes in good weather) of a potato in bad weather is $p=\frac{\gamma}{1-\gamma}$

Budget constraint:

$$
c_{g}+\frac{\gamma}{1-\gamma} c_{b}=\frac{1}{1-\gamma} W-\frac{\gamma}{1-\gamma} L
$$

consumption in bad state

Optimality condition:

$$
M R S_{b g}=\frac{\pi_{b} u^{\prime}\left(c_{b}\right)}{\pi_{g} u^{\prime}\left(c_{g}\right)}=\frac{\gamma}{1-\gamma}=p
$$

consumption in bad state

Demand for insurance

- Of course, we could also solve for optimal K directly:

$$
\max _{K}\left\{\pi_{g} u(W-\gamma K)+\pi_{b} u(W-L-\gamma K+K)\right\}
$$

- FOC:

$$
\begin{aligned}
& 0=-\gamma \pi_{g} u^{\prime}(W-\gamma K)+(1-\gamma) \pi_{b} u^{\prime}(W-L-\gamma K+K) \\
& \Leftrightarrow \quad \frac{\pi_{b} u^{\prime}(W-L-\gamma K+K)}{\pi_{g} u^{\prime}(W-\gamma K)}=\frac{\gamma}{1-\gamma}
\end{aligned}
$$

Risk of losses and price of insurance

- The market price of insurance should satisfy $\gamma \geq \pi_{b}$, so the insurer gets enough revenue γK to cover expected payments $\pi_{b} K$. This implies that:

$$
\begin{aligned}
\gamma & \geq \pi_{b} \\
1-\pi_{b} & \geq 1-\gamma \\
\gamma\left(1-\pi_{b}\right) & \geq \pi_{b}(1-\gamma) \\
1 & \geq \frac{\pi_{b}(1-\gamma)}{\gamma\left(1-\pi_{b}\right)}=\frac{u^{\prime}\left(c_{g}\right)}{u^{\prime}\left(c_{b}\right)} \quad \quad \text { (from FOC) } \\
u^{\prime}\left(c_{b}\right) & \geq u^{\prime}\left(c_{g}\right) \\
c_{b} & \leq c_{g} \quad \text { (assuming risk aversion) }
\end{aligned}
$$

- Consumer gets full insurance iif it's actuarially fair.

Case $\gamma=\pi_{b}$: actuarially fair insurance

Case $\gamma>\pi_{b}$: insurer expects a profit

Increasing the premium: As insurance gets expensive, consumer buys less coverage.

Example 1: Logarithmic utility

Let's now assume that $u(c)=\ln (c)$ From the FOC:

$$
\begin{aligned}
\gamma \pi_{g} u^{\prime}(W-\gamma K) & =(1-\gamma) \pi_{b} u^{\prime}(W-L+(1-\gamma) K) \\
\gamma \pi_{g}[W-L+(1-\gamma) K] & =(1-\gamma) \pi_{b}(W-\gamma K) \\
\pi_{g} \gamma(W-L)+\pi_{g} \gamma(1-\gamma) K & =\pi_{b}(1-\gamma) W-\pi_{b} \gamma(1-\gamma) K \\
\left(\pi_{b}+\pi_{g}\right)(1-\gamma) \gamma K & =\left(\pi_{b}-\gamma\left(\pi_{b}+\pi_{g}\right)\right) W+\gamma \pi_{g} L \\
\gamma(1-\gamma) K & =\left(\pi_{b}-\gamma\right) W+\gamma\left(1-\pi_{b}\right) L \\
K^{*} & =\frac{1-\pi_{b}}{1-\gamma} L-\frac{\gamma-\pi_{b}}{\gamma(1-\gamma)} W
\end{aligned}
$$

Optimal contingent consumption plans:

s	\mathbb{P}	y	c^{*}
g	π_{g}	W	$\frac{1-\pi_{b}}{1-\gamma}(W-\gamma L)$
b	π_{b}	$W-L$	$\frac{\pi_{b}}{\gamma}(W-\gamma L)$

A risk averse consumer

A risk loving consumer

Measuring risk aversion

- A consumer with a von Neumann-Morgenstern utility function can be one of the following:
- Risk-averse, with a concave utility function;
- Risk-neutral, with a linear utility function, or;
- Risk-loving, with a convex utility function.
- Then, the degree of risk-aversion a consumer displays would be related to the curvature of their Bernoulli utility function $u(W)$.
- The more "curved" a concave $u(W)$ is, the lower will be a consumer's certainty equivalent, and the higher their risk premium.
- How do we measure the curvature of a function?
- Simple - using the function's second derivative.

Arrow-Pratt measure of risk aversion

CARA

Absolute risk aversion

$$
\frac{-u^{\prime \prime}(W)}{u^{\prime}(W)}
$$

$$
u(c)=-e^{-\rho c}
$$

Relative risk aversion

$$
\frac{-u^{\prime \prime}(W) W}{u^{\prime}(W)}
$$

CRRA

$$
u(c)=\frac{c^{1-\sigma}-1}{1-\sigma}
$$

A change in risk aversion

A risky asset

- Consider a simple two-period portfolio problem involving two assets, one with a risky (gross) return $\tilde{R} \geq 0$ and one with a sure (gross) return $R_{f} \geq 1$.
- Let w be initial wealth, and let $x \in[0,1]$ be the share of wealth invested in the risky asset.

s	\mathbb{P}	risky	risk-free	c
$\tilde{R}=R$	$f(R)$	$x w$	$(1-x) w$	$\left[(1-x) R_{f}+x R\right] w$

- In this case the second-period wealth can be written as

$$
\begin{aligned}
\tilde{W} & =(1-x) R_{f} w+x \tilde{R} w \\
& =\left[(1-x) R_{f}+x \tilde{R}\right] w
\end{aligned}
$$

- Note that \tilde{W} is a random variable since \tilde{R} is random.

Expected utility

- The expected utility from investing x in the risky asset:

$$
v(x)=\mathbb{E} u(c)=\mathbb{E} u\left(\left[(1-x) R_{f}+x \tilde{R}\right] w\right)
$$

- The portfolio problem is then to choose $x \in[0,1]$ to maximize $v(x)$:

$$
\mathcal{L}(x, \mu, \lambda)=\mathbb{E} u\left(\left[(1-x) R_{f}+x \tilde{R}\right] w\right)+\mu x+\lambda(1-x)
$$

- Conditions:

$$
\begin{array}{rlr}
& \mathbb{E}\left\{u^{\prime}(\tilde{W})\left(\tilde{R}-R_{f}\right) w\right\}+\mu-\lambda=0 \\
\mu \geq 0 & x \geq 0 & \mu x=0 \\
\lambda \geq 0 & x \leq 1 & \lambda(1-x)=0
\end{array}
$$

Second order condition

- Notice that second derivative is

$$
\mathbb{E}\left\{u^{\prime \prime}(\tilde{W})\left(\tilde{R}-R_{f}\right)^{2} w^{2}\right\}<0 \quad \text { iif } \quad u^{\prime \prime}(\tilde{W})<0
$$

- SOC requires that consumer is risk-averse.

Slackness conditions

- The slackness conditions (SC) imply:
- if $x=0, \quad 2^{\text {nd }}$ group of SC satisfied with $\lambda=0$.
- if $x=1, \quad 1^{\text {st }}$ group of SC satisfied with $\mu=0$.
- if $0<x<1$, both groups of SC satisfied with $\lambda=\mu=0$.
- Then, we only need to analyze 3 cases:
- $x=0 \Rightarrow \mathbb{E}\left\{u^{\prime}(\tilde{W})\left(\tilde{R}-R_{f}\right)\right\}=-\mu \leq 0$
- $x=1 \quad \Rightarrow \quad \mathbb{E}\left\{u^{\prime}(\tilde{W})\left(\tilde{R}-R_{f}\right)\right\}=\lambda \geq 0$
- $0<x<1 \Rightarrow \mathbb{E}\left\{u^{\prime}(\tilde{W})\left(\tilde{R}-R_{f}\right)\right\}=0$

Case 1: $x=0 \Rightarrow \tilde{W}=w R_{f}$

$$
\begin{aligned}
\mathbb{E}\left\{u^{\prime}(\tilde{W})\left(\tilde{R}-R_{f}\right)\right\} & \leq 0 \\
\mathbb{E}\left\{u^{\prime}\left(w R_{f}\right)\left(\tilde{R}-R_{f}\right)\right\} & \leq 0 \\
u^{\prime}\left(w R_{f}\right) \mathbb{E}\left\{\tilde{R}-R_{f}\right\} & \leq 0 \\
\mathbb{E}\left\{\tilde{R}-R_{f}\right\} & \leq 0 \\
\mathbb{E}\{\tilde{R}\} & \leq R_{f}
\end{aligned}
$$

Consumer does not invest in risky asset if its expected return is lower than the risk-free return.

Case 2: $x=1 \Rightarrow \tilde{W}=w \tilde{R}$

$$
\begin{aligned}
\mathbb{E}\left\{u^{\prime}(\tilde{W})\left(\tilde{R}-R_{f}\right)\right\} & \geq 0 \\
\mathbb{E}\left\{u^{\prime}(\tilde{W}) \tilde{R}\right\} & \geq \mathbb{E}\left\{u^{\prime}(\tilde{W}) R_{f}\right\} \\
\mathbb{E}\left\{u^{\prime}(w \tilde{R}) \tilde{R}\right\} & \geq \mathbb{E}\left\{u^{\prime}(w \tilde{R}) R_{f}\right\} \\
R_{f} & \leq \frac{\mathbb{E}\left\{u^{\prime}(w \tilde{R}) \tilde{R}\right\}}{\mathbb{E}\left\{u^{\prime}(w \tilde{R})\right\}}
\end{aligned}
$$

Consumer does not invest in risk-free asset if its return is "too low". We need more details about the \tilde{R} process and utility u to determine what "too low" is.

$$
\begin{aligned}
0 & =\mathbb{E}\left\{u^{\prime}(\tilde{W})\left(\tilde{R}-R_{f}\right)\right\} \\
& =\operatorname{Cov}\left[u^{\prime}(\tilde{W}), \tilde{R}-R_{f}\right]+\mathbb{E}\left[u^{\prime}(\tilde{W})\right] \mathbb{E}\left[\tilde{R}-R_{f}\right]
\end{aligned}
$$

Then

$$
\mathbb{E} \tilde{R}-R_{f}=\frac{-\operatorname{Cov}\left[u^{\prime}(\tilde{W}), \tilde{R}\right]}{\mathbb{E} u^{\prime}(\tilde{W})}>0
$$

Example 2:

"Investing" in "Tiempos"

- In "Tiempos" lottery, you pick one number out of 100 , all of them with equal probability (1\%) of winning.
- In winning state, your gross return is $\tilde{R}=72$.
- In losing state, your gross return is $\tilde{R}=0$.
- If you don't play, you keep your money $\left(R_{f}=1\right)$.
- Expected return on lottery is

$$
\mathbb{E} \tilde{R}=0.99 \times 0+0.01 \times 72=0.72<1=R_{f}
$$

- Therefore, a risk-averse consumer would never play "Tiempos".

3. Intertemporal consumption

Adding a time dimension

- So far we have only studied static choices.
- Life is full of intertemporal choices: Should I study for my test today or tomorrow? Should I save or should I consume now?
- We will present a simple model: the Life-Cycle/Permanent Income Model of Consumption.
- Developed by Modigliani (Nobel winner 1985) and Friedman (Nobel winner 1976).
- Will allow us to address several key issues: effects of government programs including Social Security, government debts and deficits.

The model

- Representative household lives 2 periods.
- Utility function:

$$
U\left(c_{0}, c_{1}\right)=u\left(c_{0}\right)+\beta u\left(c_{1}\right)
$$

- c_{0} is consumption in first (current) period of life,
- c_{1} is consumption in second (future) period of life,
- $0<\beta<1$ measures household's degree of impatience.
- Preferences over c_{0}, c_{1} satisfy monotonicity ($u^{\prime}>0$) and convexity ($u^{\prime \prime}<0$).

More on preferences

$$
U\left(c_{0}, c_{1}\right)=u\left(c_{0}\right)+\beta u\left(c_{1}\right)
$$

- Consumption smoothing motive, partially offset by discounting.
- Assume c_{0} and c_{1} are normal: more income \Rightarrow more of both.
- Intertemporal marginal rate of substitution measures willingness to substitute consumption over time:

$$
M R S_{c_{0}, c_{1}}=\frac{U_{c_{0}}\left(c_{0}, c_{1}\right)}{U_{c_{1}}\left(c_{0}, c_{1}\right)}=\frac{u^{\prime}\left(c_{0}\right)}{\beta u^{\prime}\left(c_{1}\right)}
$$

$U\left(c_{0}, c_{1}\right)=u\left(c_{0}\right)+\beta u\left(c_{1}\right)$

Budget constraint I

- Abstract from labor/leisure tradeoff.
- (Labor) income $y_{t} \geq 0$ in period $t=0,1$.
- Initial wealth $a_{0} \geq 0$.
- Consumer can save part of income or initial wealth in the first period, or it can borrow against future income y_{1}.
- Interest rate on both savings and on loans is equal to r. Gross interest rate $R \equiv 1+r$
- Let $s_{t}=y_{t}-c_{t}$ denote saving.
- Budget constraint in first period:

$$
a_{1}=R\left(a_{0}+s_{0}\right)
$$

- Budget constraint in second period:

$$
a_{2}=R\left(a_{1}+s_{1}\right)=0
$$

Budget constraint (II)

- Combining both constraints:

$$
R\left(a_{0}+s_{0}\right)+s_{1}=0 \quad \Rightarrow \quad-s_{0}-\frac{s_{1}}{R}=a_{0}
$$

- Substitute $s_{t}=y_{t}-c_{t}$

$$
\begin{equation*}
c_{0}+\frac{c_{1}}{R}=y_{0}+\frac{y_{1}}{R}+a_{0}=H+a_{0} \equiv W \tag{PVBC}
\end{equation*}
$$

- We have normalized the price of the consumption good in the first period to 1.
- Gross interest rate $R \equiv 1+r$ is the relative price of consumption goods today to consumption goods tomorrow.
- Called the present value budget constraint (PVBC).

$c_{0}+\frac{c_{1}}{R}=W$

The consumer's problem

$$
\max _{c_{0}, c_{1}}\left\{u\left(c_{0}\right)+\beta u\left(c_{1}\right)\right\} \quad \text { subject to } c_{0}+\frac{c_{1}}{R}=W
$$

- Form Lagrangian with multiplier $\lambda \geq 0$

$$
\mathcal{L}\left(c_{0}, c_{1}, \lambda\right)=u\left(c_{0}\right)+\beta u\left(c_{1}\right)+\lambda\left(W-c_{0}-\frac{c_{1}}{R}\right)
$$

- FOCs:

$$
\begin{aligned}
u^{\prime}\left(c_{0}\right) & =\lambda \\
\beta u^{\prime}\left(c_{1}\right) & =\frac{\lambda}{R}
\end{aligned}
$$

- Combine to get

Euler equation

$$
u^{\prime}\left(c_{0}\right)=\beta R u^{\prime}\left(c_{1}\right)
$$

$u^{\prime}\left(c_{0}\right)=\beta R u^{\prime}\left(c_{1}\right)$

Consumer is a lender

Consumer is a borrower

Implications of the Euler equation

$$
u^{\prime}\left(c_{0}\right)=\beta R u^{\prime}\left(c_{1}\right)
$$

- Can also be written

$$
M R S_{c_{0}, c_{1}}=1+r
$$

- Recall that u is concave, so $u^{\prime \prime}<0 \Rightarrow u^{\prime}(c)$ is decreasing. So if:
- $\beta(1+r)>1 \quad \Rightarrow \quad u^{\prime}\left(c_{0}\right)>u^{\prime}\left(c_{1}\right) \quad \Rightarrow \quad c_{0}<c_{1}$
- $\beta(1+r)<1 \quad \Rightarrow \quad u^{\prime}\left(c_{0}\right)<u^{\prime}\left(c_{1}\right) \quad \Rightarrow \quad c_{0}>c_{1}$
- $\beta(1+r)=1 \quad \Rightarrow \quad u^{\prime}\left(c_{0}\right)=u^{\prime}\left(c_{1}\right) \quad \Rightarrow \quad c_{0}=c_{1}$
- Behavior of consumption over time depends on rate of time preference relative to interest rate.
- If equal, perfect consumption smoothing.

Example 3: Logarithmic utility
$u(c)=\ln (c)$

- Euler equation:

$$
\frac{1}{c_{0}}=\frac{\beta R}{c_{1}} \quad \Rightarrow \quad c_{1}=\beta R c_{0}
$$

- Using the PVBC

$$
c_{0}=W-\frac{c_{1}}{R}=W-\beta c_{0}
$$

- So that

$$
\begin{array}{ll}
c_{0}=\frac{1}{1+\beta} W & s_{0}=\frac{1}{1+\beta}\left(\beta y_{0}-a_{0}-\frac{y_{1}}{R}\right) \\
c_{1}=\frac{\beta R}{1+\beta} W & a_{1}=\frac{1}{1+\beta}\left[\beta R\left(y_{0}+a_{0}\right)-y_{1}\right]
\end{array}
$$

- Value function:

$$
V(W, r)=(1+\beta) \ln W+\beta \ln R+\beta \ln \beta-(1+\beta) \ln (1+\beta)
$$

- Increasing wealth W, regardless of source, increases consumer utility:

$$
\frac{\partial V}{\partial W}=\frac{1+\beta}{W}
$$

- Effect of a change in interest rate r depends on wealth composition, which in turn determines whether the consumer has positive or negative assets a_{1} at the end of period 1:

$$
\begin{aligned}
\frac{\partial V}{\partial r} & =\frac{1}{R^{2} W}\left[\beta R\left(y_{0}+a_{0}\right)-y_{1}\right] \\
& =\frac{1+\beta}{R^{2} W} a_{1}
\end{aligned}
$$

Example 4:
CRRA utility

- The logarithmic utility from last example is just a special case of the constant relative risk aversion(CRRA) utility, when $\sigma=1$.

$$
u(c)=\frac{c^{1-\sigma}-1}{1-\sigma}
$$

- With CRRA utility, the Bellman equation becomes

$$
c_{0}^{-\sigma}=\beta R c_{1}^{-\sigma} \quad \Rightarrow \quad c_{1}=(\beta R)^{1 / \sigma} c_{0}
$$

- Use budget constraint $c_{0}+\frac{c_{1}}{R}=W$ to solve for c_{0} and c_{1} :

$$
c_{0}=\frac{R}{R+(\beta R)^{1 / \sigma}} W \quad c_{1}=\frac{R(\beta R)^{1 / \sigma}}{R+(\beta R)^{1 / \sigma}} W
$$

Increasing wealth

Increasing interest rate: lender

Increasing interest rate: borrower

The model

- A consumer lives two periods, and chooses among $n+1$ goods in each period: $x_{i t}$ for $i \in\{0,1, \ldots, n\}$ and $t \in\{0,1\}$.
- Utility function depends on $2 n+2$ goods:

$$
U=\frac{\left(\alpha_{0} x_{00}^{\rho}+\cdots+\alpha_{n} x_{n 0}^{\rho}\right)^{\frac{1-\gamma}{\rho}}}{1-\gamma}+\beta \frac{\left(\alpha_{0} x_{01}^{\rho}+\cdots+\alpha_{n} x_{n 1}^{\rho}\right)^{\frac{1-\gamma}{\rho}}}{1-\gamma}
$$

- Let \mathbf{x}_{t} be the bundle of goods consumed at time t :

$$
\mathbf{x}_{t}=\left[x_{0 t}, x_{1 t}, \ldots, x_{n t}\right]
$$

Constraints in nominal terms

- Consumer can save and borrow money at nominal interest rate i.
- The budget constraint says that the present value of all consumption purchases must equal the present value of nominal income Y_{t} :

$$
\sum_{k=0}^{n} p_{k 0} x_{k 0}+\frac{1}{1+i} \sum_{k=0}^{n} p_{k 1} x_{k 1}=Y_{0}+\frac{Y_{1}}{1+i}
$$

- Let $C_{t}=\sum_{k=0}^{n} p_{k t} x_{k t}$ be nominal consumption at time t.
- Budget constraint becomes

$$
C_{0}+\frac{C_{1}}{1+i}=Y_{0}+\frac{Y_{1}}{1+i} \equiv W
$$

where W is nominal wealth.

Constraints in real terms

- Let $P_{t}=\left(\alpha_{0}^{\sigma} p_{0 t}^{1-\sigma}+\cdots+\alpha_{n}^{\sigma} p_{n t}^{1-\sigma}\right)^{\frac{1}{1-\sigma}}$ be the price index at time t
- Notice that $\frac{P_{1}}{P_{0}(1+i)}=\frac{1+\pi}{1+i}=\frac{1}{1+r}$, where π is the inflation rate, and r the real interest rate.
- Divide budget constraint by price index P_{0}

$$
\begin{aligned}
\frac{C_{0}}{P_{0}}+\frac{P_{1}}{P_{0}(1+i)} \frac{C_{1}}{P_{1}} & =\frac{Y_{0}}{P_{0}}+\frac{P_{1}}{P_{0}(1+i)} \frac{Y_{1}}{P_{1}}=\frac{W}{P_{0}} \\
c_{0}+\frac{c_{1}}{1+r} & =y_{0}+\frac{y_{1}}{1+r}=w
\end{aligned}
$$

where c_{t} is real consumption, y_{t} is real income, and w is real wealth.

- Constraint says that present value of real (composite) consumption equals the present value of real income.

Solving the problem: 2 steps

- Let \tilde{U} denote CES function: $\tilde{U}\left(\mathbf{x}_{t}\right)=\left(\alpha_{0} x_{0 t}^{\rho}+\cdots+\alpha_{n} x_{n t}^{\rho}\right)^{\frac{1}{\rho}}$
- Utility becomes:

$$
U=\frac{\tilde{U}\left(\mathbf{x}_{0}\right)^{1-\gamma}}{1-\gamma}+\beta \frac{\tilde{U}\left(\mathbf{x}_{1}\right)^{1-\gamma}}{1-\gamma}
$$

- Consumer has to choose $2 n+2$ variables, subject to 1 budget constraint.
- To solve this problem, consumer makes decisions in two stages
- Intra-temporal stage: Given all prices and the total amount to spend in each period, consumer chooses goods for each period separately.
- Inter-temporal stage: Taking the intra-temporal solution as given, solve the inter-temporal problem:

Intra-temporal stage

- Given all prices and the total amount to spend in each period, consumer chooses goods for each period separately.
- Since intra-temporal preferences are CES, we know (from Example 4 in Lecture 7) that if consumer spends C_{t} dollars and price level is P_{t}, the optimal utility he can get is

$$
\tilde{V}\left(C_{t}, P_{t}\right) \equiv \max _{\mathbf{x}_{\mathbf{t}}} \tilde{U}\left(\mathbf{x}_{t}\right)=\frac{C_{t}}{P_{t}}=c_{t}
$$

Inter-temporal stage

- Taking the intra-temporal solution as given, problem becomes:

$$
\max _{c_{0}, c_{1}} \frac{c_{0}^{1-\gamma}}{1-\gamma}+\beta \frac{c_{1}^{1-\gamma}}{1-\gamma} \quad \text { s.t } \quad c_{0}+\frac{c_{1}}{R}=w
$$

- But this is equivalent to what we solved in Example 4 in this lecture. Its solution is characterized by the Euler equation

$$
c_{0}^{-\gamma}=\beta R c_{1}^{-\gamma} \quad \Rightarrow c_{1}=(\beta R)^{1 / \gamma} c_{0}
$$

- Solution is

$$
c_{0}=\frac{R}{R+(\beta R)^{1 / \gamma}} w \quad c_{1}=\frac{R(\beta R)^{1 / \gamma}}{R+(\beta R)^{1 / \gamma}} w
$$

Marshallian demands for the goods

- Demands for each of the goods in then:

$$
\begin{aligned}
x_{k t} & =\left(\frac{\alpha_{k}}{\frac{p_{k t}}{P_{t}}}\right) c_{t} \\
& =\left(\frac{\alpha_{k}}{\frac{p_{k t}}{P_{t}}}\right) \frac{R(\beta R)^{t / \gamma}}{R+(\beta R)^{1 / \gamma}} w
\end{aligned}
$$

- Notice that demand for goods depends only on preference parameters $\left(\alpha_{k}\right)$ and real variables (wealth w, interest rates r, relative prices $p_{k t} / P_{t}$)

Modeling implications

- If utility is time-separable, we can split the problem of choosing n goods over T periods into $T+1$ problems:
- decide how much to spend in each of the T periods (inter-temporal allocation); and
- take each period budget and decide how to spend it into the n goods (intra-temporal allocation)
- If intra-temporal preference is CES, we can interpret the indirect utilities of the intra-temporal allocations as real composite consumption good.
- From now on, in our macro models we will analyze dynamic consumption behavior assuming that there exist such real composite consumption good.
- We will simply call it the consumption good.

4. Intertemporal consumption with uncertainty

Intertemporal consumption with uncertainty

- Representative consumer lives 2 periods.
- She can save and borrow at interest rate r.
- Her initial asset is a_{0}.
- She doesn't leave any debt or inheritance ($a_{2}=0$).
- Her income $y_{t} \geq 0$ in period $t=0,1$:
- y_{0} is known at time of deciding c_{0}.
- \tilde{y}_{1} is uncertain. It takes value $y_{1 s}$ with probability π_{s}, depending on the state of nature $s=1, \ldots, S$.
- Notice that $\sum_{s=1}^{S} \pi_{s}=1$.
- Her expected future income is then

$$
\mathbb{E} \tilde{y}_{1}=\sum_{s=1}^{S} \pi_{s} y_{1 s}
$$

Budget constraint

- Budget constraints:

$$
\begin{aligned}
& a_{1}=R\left(a_{0}+y_{0}-c_{0}\right) \\
& a_{2}=R\left(a_{1}+\tilde{y}_{1}-\tilde{c}_{1}\right)=0
\end{aligned}
$$

- a_{0} and y_{0} are certain (she already have them in her bank).
- c_{0} and a_{1} are certain (she nows what she is choosing now).
- c_{1} is uncertain because she needs to adjust future consumption to income shocks:

$$
\begin{aligned}
\tilde{c}_{1} & =a_{1}+\tilde{y}_{1} \quad \Rightarrow \\
\mathbb{E} \tilde{c}_{1} & =a_{1}+\mathbb{E} \tilde{y}_{1} \quad \Rightarrow \\
\tilde{c}_{1} & =\mathbb{E} \tilde{c}_{1}+\underbrace{\tilde{y}_{1}-\mathbb{E} \tilde{y}_{1}}_{\text {forecast error }}
\end{aligned}
$$

Consumption plans, contingent on income

State	\mathbb{P}	Period 0	Period 1
s	π_{s}	$c_{0}=a_{0}+y_{0}-\frac{a_{1}}{R}$	$c_{1 s}=a_{1}+y_{1 s}$

Example 5:
Only two states of nature

State Probability Period $0 \quad$ Period 1

L	π_{L}	$c_{0}=a_{0}+y_{0}-\frac{a_{1}}{R}$	$c_{1}^{L}=a_{1}+y_{1}^{L}$
H	π_{H}	$c_{0}=a_{0}+y_{0}-\frac{a_{1}}{R}$	$c_{1}^{H}=a_{1}+y_{1}^{H}$

Consumer wants to maximize her discounted expected utility:
$U\left(c_{0}, c_{1}^{L}, c_{1}^{H}, \pi_{L}, \pi_{H}\right)=\mathbb{E}_{\tilde{y}_{2}}\left[u\left(c_{0}\right)+\beta u\left(c_{1}\right)\right]$

$$
\begin{aligned}
& =\pi_{L}\left[u\left(c_{0}\right)+\beta u\left(c_{1}^{L}\right)\right]+\pi_{H}\left[u\left(c_{0}\right)+\beta u\left(c_{1}^{H}\right)\right] \\
& =\left(\pi_{L}+\pi_{H}\right) u\left(c_{0}\right)+\beta\left[\pi_{L} u\left(c_{1}^{L}\right)+\pi_{H} u\left(c_{1}^{H}\right)\right] \\
& =u\left(c_{0}\right)+\beta \mathbb{E} u\left(c_{1}\right)
\end{aligned}
$$

$$
\begin{aligned}
U & =\left\{u\left(c_{0}\right)+\beta \mathbb{E} u\left(c_{1}\right)\right\} \\
& =\left\{u\left(c_{0}\right)+\beta\left[\pi_{L} u\left(c_{1}^{L}\right)+\pi_{H} u\left(c_{1}^{H}\right)\right]\right\} \\
& =\left\{u\left(a_{0}+y_{0}-\frac{a_{1}}{R}\right)+\beta\left[\pi_{L} u\left(a_{1}+y_{1}^{L}\right)+\pi_{H} u\left(a_{1}+y_{1}^{H}\right)\right]\right\}
\end{aligned}
$$

Objective now depends on a_{1} alone. Take FOC:

$$
\begin{aligned}
0 & =-\frac{1}{R} u^{\prime}\left(c_{0}\right)+\beta \pi_{L} u^{\prime}\left(c_{1}^{L}\right)+\beta \pi_{H} u^{\prime}\left(c_{1}^{H}\right) \\
u^{\prime}\left(c_{0}\right) & =\beta R\left[\pi_{L} u^{\prime}\left(c_{1}^{L}\right)+\pi_{H} u^{\prime}\left(c_{1}^{H}\right)\right] \\
& =\beta R \mathbb{E}\left[u^{\prime}\left(c_{1}\right)\right] \quad \text { (Euler equation) }
\end{aligned}
$$

Wealth and permanent income

- Combining the budget constraints she gets

$$
c_{0}+\frac{\tilde{c}_{1}}{R}=\underbrace{a_{0}+y_{0}+\frac{\tilde{y}_{1}}{R}}_{\text {wealth } \tilde{W}_{0}}
$$

(for any possible state of nature)

- Her wealth at time 0 is uncertain because future income is random. But she can form an expectation:

$$
c_{0}+\frac{\mathbb{E} \tilde{c}_{1}}{R}=a_{0}+y_{0}+\frac{\mathbb{E} \tilde{y}_{1}}{R}=\mathbb{E} \tilde{W}_{0}
$$

- Her permanent income y_{p} is the constant level of consumption that she expects to be able to afford, given her expected wealth. Then

$$
y_{p}=\frac{R}{1+R} \mathbb{E} \tilde{W}
$$

The consumer's problem

- She wants to maximize her discounted expected utility (von Neumann-Morgenstern):

$$
\begin{aligned}
U\left(c_{0},\left\{c_{1 s} ; \pi_{s}\right\}_{s=1}^{S}\right) & =\mathbb{E}_{\tilde{y}_{2}}\left[u\left(c_{0}\right)+\beta u\left(c_{1}\right)\right] \\
& =u\left(c_{0}\right)+\beta \mathbb{E} u\left(c_{1}\right)
\end{aligned}
$$

- subject to contingent plans

$$
c_{0}+\frac{c_{1 s}}{R}=a_{0}+y_{0}+\frac{y_{1 s}}{R} \equiv W_{s} \quad(\text { for } s=1, \ldots, S)
$$

- There are S constraints (one per state of nature).
- Let $\lambda_{s} \pi_{s}$ be the Lagrange multiplier associated with the $s^{t h}$ constraint.

Solving the problem

- The Lagrangian is

$$
\begin{aligned}
\mathcal{L} & =u\left(c_{0}\right)+\beta \mathbb{E} u\left(c_{1}\right)+\sum_{s} \lambda_{s} \pi_{s}\left(W_{s}-c_{0}-\frac{c_{1 s}}{R}\right) \\
& =u\left(c_{0}\right)+\sum_{s} \pi_{s}\left[\beta u\left(c_{1 s}\right)+\lambda_{s}\left(W_{s}-c_{0}-\frac{c_{1 s}}{R}\right)\right]
\end{aligned}
$$

- FOCs:

$$
\begin{array}{lll}
\left(\text { wrt } c_{0}\right) & 0=u^{\prime}\left(c_{0}\right)-\sum_{s} \pi_{s} \lambda_{s} & \Rightarrow u^{\prime}\left(c_{0}\right)=\mathbb{E} \lambda \\
\left(\begin{array}{c}
\text { wrt } \left.c_{1 s}\right)
\end{array}\right. & 0=\pi_{s}\left[\beta u^{\prime}\left(c_{1 s}\right)-\frac{\lambda_{s}}{R}\right] & \Rightarrow \pi_{s} \beta R u^{\prime}\left(c_{1 s}\right)=\pi_{s} \lambda_{s}
\end{array}
$$

The Euler equation

- Adding up the FOCs wrt $c_{1 s}$, we get

$$
\begin{aligned}
\sum_{s} \pi_{s} \beta R u^{\prime}\left(c_{1 s}\right) & =\sum_{s} \pi_{s} \lambda_{s} \\
\beta R \mathbb{E} u^{\prime}\left(c_{1}\right) & =\mathbb{E} \lambda
\end{aligned}
$$

- Substituting $\mathbb{E} \lambda$ from the first $F O C$ to get

Euler equation

$$
u^{\prime}\left(c_{0}\right)=\beta R \mathbb{E} u^{\prime}\left(c_{1}\right)
$$

Side note:
Working with random variables

- Let u and v be functions, X and Z random variables, and a and b scalars.
- Suppose that X and Z depend on parameter t.
- Then, under fairly general conditions:

$$
\mathbb{E}[a u(X)+b v(Z)]=a \mathbb{E} u(X)+b \mathbb{E} v(Z)
$$

$$
\frac{\partial \mathbb{E} u(X)}{\partial t}=\mathbb{E}\left[u^{\prime}(X) \frac{\partial X}{\partial t}\right]
$$

A faster way to get the Euler equation

- Instead of having one constraint for each state of nature, just write one: the expected values of the constraint:

$$
c_{0}+\frac{\mathbb{E} \tilde{c}_{1}}{R}=\mathbb{E} \tilde{W}_{0}
$$

- Just keep in mind that this is a shortcut: the budget constraint must be satisfied in every state of nature, not only in expected values.
- Besides, the consumer is choosing future consumption contingent on each state of nature. She is not just choosing her expected future consumption.

Solving the problem

- Lagrangian is

$$
\mathcal{L}=u^{\prime}\left(c_{0}\right)+\beta \mathbb{E} u\left(c_{1}\right)+\lambda\left(\mathbb{E} \tilde{W}-c_{0}-\frac{\mathbb{E} c_{1}}{R}\right)
$$

- FOCs

$$
\begin{array}{llll}
\left(\text { wrt } c_{0}\right) & 0=u^{\prime}\left(c_{0}\right)-\lambda & \Rightarrow & u^{\prime}\left(c_{0}\right)=\lambda \\
\left(\text { wrt } c_{1}\right) & 0=\beta \mathbb{E} u^{\prime}\left(c_{1}\right)-\frac{\lambda}{R} & \Rightarrow \quad \beta R \mathbb{E} u^{\prime}\left(c_{1}\right)=\lambda
\end{array}
$$

Euler equation, again

- Then, from the two FOCs

$$
u^{\prime}\left(c_{0}\right)=\beta R \mathbb{E} u^{\prime}\left(c_{1}\right)
$$

(Euler equation)

- Euler equation can be written as:

$$
\begin{array}{cc}
\frac{u^{\prime}\left(c_{0}\right)}{\beta \mathbb{E} u^{\prime}\left(c_{1}\right)} & R
\end{array}
$$

Example 6: Hall 1978

- Assume that utility is quadratic $u(c)=\alpha c-0.5 c^{2}$ and that $\beta R=1$.
- Euler equation is:

$$
\mathbb{E} c_{1}=c_{0}
$$

- This means that consumption would follow a random walk.
- In such case, under the pure life cycle-permanent income hypothesis, a forecast of future consumption obtained by extrapolating today's level by the historical trend is impossible to improve.

Example 7:
CRRA utility, with uncertainty

- Now assume that consumer has constant relative risk aversion: $u(c)=\frac{c^{1-\sigma}}{1-\sigma}$, with $\sigma>0$.
- Euler equation is:

$$
c_{0}^{-\sigma}=\beta R \mathbb{E}\left(c_{1}^{-\sigma}\right)
$$

- But notice that $\mathbb{E}\left(c_{1}^{-\sigma}\right) \neq\left(\mathbb{E} c_{1}\right)^{-\sigma}$, so we can not simply use budget constraint

$$
c_{0}+\frac{\mathbb{E} \tilde{c}_{1}}{R}=\mathbb{E} \tilde{W}_{0}
$$

to solve for c_{0} and $\mathbb{E} c_{1}$.

- So, in dynamic models with uncertainty, it is often necessary to use numerical methods to analyze the solution of the model.

References I

固 Hall, Robert E. (Dec. 1978). "Stochastic Implications of the Life Cycle-Permanent Income Hypothesis. Theory and Evidence". In: The Journal of Political Economy 86.6, pp. 971-987.
Varian, Hal R. (1992). Microeconomic Analysis. 3rd ed.

- (2014). Intermediate Microeconomics. With Calculus. 1st ed.

Williamson, Stephen D. (2014). Macroeconomics. 5th ed. Pearson.

