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1. Introduction



Introduction

I Before we go on to build models of aggregate economic
activity that can explain why business cycles exist and what, if
anything, should be done about them, we must understand
the key features that we observe in economic data that define
a business cycle.

I In this lecture, we examine the regularities in the relationships
among aggregate economic variables as they fluctuate over
time.
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Deviations from trend versus cycles

I Typically, we think of a time series as the sum of four
components:

series = trend + cycle + seasonal + irregular

I After removing the trend and the seasonal components, we
are left with the business cycle and the irregular component.
We refer to this as deviations from trend.

I For simplicity, in this lecture we neglect the irregular
component and refer to deviations from trend as “cycles”.
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Seasonally adjusted data

I The data we are studying in this lecture, and most data that
is used in macro research and in formulating macro policy, is
seasonally adjusted.

I That is, in most macro time series, there exists a predictable
seasonal component.

I There are various methods for seasonally adjusting data, but
the basic idea is to observe historical seasonal patterns and
then take out the extra amount that we tend to see on
average during a particular season.
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Example 1:
Seasonally adjusted IMAE



Seasonal adjustment tends to smooth a time series with a seasonal
component.
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Trend versus cycle

I The primary defining feature of business cycles is that they are
fluctuations about trend in real GDP.

I We represent the trend in real GDP with a smooth curve that
closely fits actual real GDP, with the trend representing that
part of real GDP that can be explained by long-run growth
factors.

I What is left over, the deviations from trend, we take to
represent business cycle activity.
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Idealized business cycle
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The need for stationary series

I Many modeling techniques assume that variables are
stationary:

I ARMA
I DSGE

I To work with non-stationary series, we usually transform
(filter) the original data to obtain a stationary series.

I In this lecture, we will analyze the properties of one such
transformation: the HP filter.
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Separating trend from cycle

I The techniques used to separate trend from cycle are called
filters.

I There are plenty of them! For example:
HP Hodrick-Prescott

FOD First-Order Differencing
BN Beveridge-Nelson
UC Unobservable Components
LT Linear trend

SEGM Segmented trend
FREQ Frequency Domain Masking
MLT Common deterministic trend

MINDEX One-dimensional index
COIN Cointegration
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2. The linear trend



Disaggregation of a time series

I We have a sample of T observations on random variable Yt:

{y1, y2, . . . , yT }

I Yt has two components: growth (trend) st and cycle ct.

yt = st + ct

I We assume that the trend is a straight line, so that
st ≡ a+ bt.
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Linear trend
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How to find the best fit?

I Since data points are not collinear, it is impossible to draw a
straight line connecting all of them.

I So we look for a line that passes “close” to all those points.
I One option is to minimize the sum of all distances between yt

and st:

min
a,b

T∑
t=1

|yt − st|

I Another option is to minimize the sum of all squared distances
between yt and st:

min
a,b

T∑
t=1

(yt − st)
2

I The advantage of the second option is that x2 is
differentiable, while |x| is not.
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Finding the linear trend

Formally, the linear trend is defined by st = a∗ + b∗t, where the
parameters are such that:

a∗, b∗ = argmin
a,b

T∑
t=1

(yt − st)
2 = argmin

a,b

T∑
t=1

(yt − a− bt)2

First-order conditions are:

0 =
T∑
t=1

(yt − a− bt) ⇒ aT + bΣ(t) = Σ(y)

0 =

T∑
t=1

t (yt − a− bt) ⇒ aΣ(t) + bΣ(t2) = Σ(ty)
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Solving for a∗ and b∗

[
T Σ(t)

Σ(t) Σ(t2)

] [
a
b

]
=

[
Σ(y)
Σ(ty)

]
[
a
b

]
=

[
T Σ(t)

Σ(t) Σ(t2)

]−1 [
Σ(y)
Σ(ty)

]
[
a
b

]
=

1

TΣ(t2)− Σ2(t)

[
Σ(t2) −Σ(t)
−Σ(t) T

] [
Σ(y)
Σ(ty)

]
Note that

b∗ =
TΣ(ty)− Σ(t)Σ(y)

TΣ(t2)− Σ2(t)
=

Cov(t, yt)
Var(t)

a∗T + bΣ(t) = Σ(y) ⇒ a∗ = ȳ − b∗t̄ = ȳ − b∗ T+1
2
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A little trick from linear algebra

Let’s define these matrices

Y =


y1
y2
...
yT

 S =


s1
s2
...
sT

 =


1 1
1 2
... ...
1 T


X

[
a
b

]
β
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Rewriting the linear trend problem

β = argmin
a,b

T∑
t=1

(yt − st)
2 = argmin

β
(Y − S)′(Y − S)

= argmin
β

(Y −Xβ)′(Y −Xβ)

= argmin
β

{
Y ′Y − 2Y ′Xβ + β′X ′Xβ

}
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Side note:
Matrix calculus



Let x ∈ ℜn, a ∈ Ren, and A be an n× n matrix. Then

∂a′x

∂x
= a

∂x′Ax

∂x
= (A+A′)x

and if S is a n× n symmetric matrix, then

∂x′Sx

∂x
= 2Sx
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Solving the problem

I Taking the FOC

βOLS = argmin
β

{
Y ′Y − 2Y ′Xβ + β′X ′Xβ

}

⇒− 2X ′Y + 2X ′Xβ = 0

I Then, the linear trend filter is

SLT = X
(
X ′X

)−1
X ′Y (trend)

CLT ≡ Y − SLT =
[
I −X

(
X ′X

)−1
X ′

]
Y (cycle)
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Example 2:
The linear trend filter



Assuming that we have T = 5 data points Y = [y1, y2, y3, y4, y5]
′ and

that λ = 4, the trend data points S = [s1, s2, s3, s4, s5]
′ are given by :

s1 = 0.6y1 +0.4y2 +0.2y3 +0.0y4 −0.2y5

s2 = 0.4y1 +0.3y2 +0.2y3 +0.1y4 +0.0y5

s3 = 0.2y1 +0.2y2 +0.2y3 +0.2y4 +0.2y5

s4 = 0.0y1 +0.1y2 +0.2y3 +0.3y4 +0.4y5

s5 = −0.2y1 +0.0y2 +0.2y3 +0.4y4 +0.6y5

Notice that each trend data point st is just a weighted average of all
points in Y . Moreover, some of the weights are negative!
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On the other hand, the cycle data points C = [c1, c2, c3, c4, c5]
′ are given

by :

c1 = 0.4y1 −0.4y2 −0.2y3 −0.0y4 +0.2y5

c2 = −0.4y1 +0.7y2 −0.2y3 −0.1y4 −0.0y5

c3 = −0.2y1 −0.2y2 +0.8y3 −0.2y4 −0.2y5

c4 = 0.0y1 −0.1y2 −0.2y3 +0.7y4 −0.4y5

c5 = 0.2y1 −0.0y2 −0.2y3 −0.4y4 +0.4y5

Again, notice that each cycle data point ct is just a weighted average of
all points in Y .
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Example 3:
Filtering with a linear trend



USA real GDP, 2012 dollars
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3. The Hodrick-Prescott filter



Disaggregation of a time series

I We have a sample of T observations on random variable Yt:

{y1, y2, . . . , yT }

I Yt has two components: growth (trend) st and cycle ct.

yt = st + ct

I We assume that the trend is a smooth curve, although not
necessarily a straight line.
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Data trend

y, s

t

data
trend

yt = st + ct
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Conflicting objectives

I Starting with yt, Hodrick and Prescott 1997 “extract” the
trend st

{s1, s2, . . . , sT },
by balancing two conflicting objectives:

1. the fit to the original series, that is, yt − st must be small.
2. the resulting trend must be smooth, which means that the

changes in the slope of the trend (st+1 − st)− (st − st−1)
must be small too.

I The relative importance of these two factors is weighed with a
parameter λ.
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The Hodrick-Prescott filter

Formally, the trend is defined by:

sHP
i = argmin

s1,...,sT

{
T∑
t=1

(yt − st)
2 + λ

T−1∑
t=2

[(st+1 − st)− (st − st−1)]
2

}

= argmin
s1,...,sT

{
T∑
t=1

(yt − st)
2 + λ

T−1∑
t=2

(st+1 − 2st + st−1)
2

}
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A little trick from linear algebra

Let’s define these matrices

Y =


y1
y2
...
yT

 S =


s1
s2
...
sT



AT−2×T =


1 −2 1 0 . . . 0 0 0 0
0 1 −2 1 . . . 0 0 0 0

. . .
0 0 0 0 . . . 0 1 −2 1
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Rewriting the optimization problem

sHP
i = argmin

s1,...,sT

{
T∑
t=1

(yt − st)
2 + λ

T−1∑
t=2

(st+1 − 2st + st−1)
2

}

= argmin
S

{
(Y − S)′(Y − S) + λ(AS)′(AS)

}
= argmin

S

{
Y ′Y − 2Y ′S + S′(I + λA′A)S

}
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Solving the problem

I Taking the FOC

SHP = argmin
S

{
Y ′Y − 2Y ′S + S′(I + λA′A)S

}
⇒− 2Y + 2

(
I + λA′A

)
S = 0

I Then, the HP filter is

SHP =
(
I + λA′A

)−1
Y (trend)

CHP ≡ Y − SHP =
[
I −

(
I + λA′A

)−1
]
Y (cycle)
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Example 4:
The HP filter trend



Assuming that we have T = 5 data points Y = [y1, y2, y3, y4, y5]
′ and

that λ = 4, the trend data points S = [s1, s2, s3, s4, s5]
′ are given by :

s1 = 0.67y1 +0.36y2 +0.13y3 −0.02y4 −0.14y5

s2 = 0.36y1 +0.34y2 +0.23y3 +0.10y4 −0.02y5

s3 = 0.13y1 +0.23y2 +0.29y3 +0.23y4 +0.13y5

s4 = −0.02y1 +0.10y2 +0.23y3 +0.34y4 +0.36y5

s5 = −0.14y1 −0.02y2 +0.13y3 +0.36y4 +0.67y5

Notice that each trend data point st is just a weighted average of all
points in Y . Moreover, some of the weights are negative!
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On the other hand, the cycle data points C = [c1, c2, c3, c4, c5]
′ are given

by :

c1 = 0.33y1 −0.36y2 −0.13y3 +0.02y4 +0.14y5

c2 = −0.36y1 +0.66y2 −0.23y3 −0.10y4 +0.02y5

c3 = −0.13y1 −0.23y2 +0.71y3 −0.23y4 −0.13y5

c4 = 0.02y1 −0.10y2 −0.23y3 +0.66y4 −0.36y5

c5 = 0.14y1 +0.02y2 −0.13y3 −0.36y4 +0.33y5

Again, notice that each cycle data point ct is just a weighted average of
all points in Y .
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Choosing λ

I The result of filtering is very sensitive to the choice of λ
I As a rule of thumb, λ is chosen depending on frequency of

data.
I Annual ⇒ 100
I Quarterly ⇒ 1600
I Monthly ⇒ 14400
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Example 5:
Filtered series when λ = 1600
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USA real consumption, 2012 dollars
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4. Regularities in GDP fluctuations



Forecasting business cycles

I Business cycles are quite irregular: the changes in real GDP
are unpredictable; it’s very difficult to predict the timing of a
business cycle upturn or downturn.

I Business cycles are quite regular, however, in terms of
comovements: macroeconomic variables move together in
highly predictable ways.
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Real GDP cycles from 1947 to 2012
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Persistent but irregular

I Real GDP cycles are persistent:
I when real GDP is above trend, it tends to stay above trend
I when it is below trend, it tends to stay below trend.

I Real GDP cycles are quite irregular.
1. The time series of real GDP cycles is quite choppy.
2. There is no regularity in the amplitude of fluctuations in real

GDP about trend. Some of the peaks and troughs represent
large deviations from trend, whereas other peaks and troughs
represent small deviations from trend.

3. There is no regularity in the frequency of fluctuations in real
GDP about trend. The length of time between peaks and
troughs in real GDP varies considerably.
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Forecasting implications

I Because real GDP cycles are persistent, short-term forecasting
is relatively easy.

I But because they are irregular longer-term forecasting is
difficult:

I the choppiness of fluctuations in real GDP makes these
fluctuations hard to predict

I the lack of regularity in the amplitude and frequency of
fluctuations implies that it is difficult to predict the severity
and length of recessions and booms.
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5. Comovement



Comovement: looking for (contemporary) correlation

I While real GDP fluctuations are irregular, macro variables
fluctuate together in strongly regular patterns.

I We refer to these patterns in fluctuations as comovement.
I Macro variables are measured as time series; for example, real

GDP is measured in a series of quarterly observations over
time.

I When we examine comovements in macro time series,
typically we look at these time series two at a time.

I A good starting point is to plot the data.
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Plotting in time domain

x
y

%
de
vi
at
io
n
fro

m
tr
en
d

Positive correlation between x and y

x

z

Time

%
de
vi
at
io
n
fro

m
tr
en
d

Negative correlation between x and z

©Randall Romero Aguilar, PhD EC-3201 / 2019.II 38



Plotting a scatter plot

x

y
Positive correlation between x and y

x

z

Negative correlation between x and z

x

w

Zero correlation between x and w

©Randall Romero Aguilar, PhD EC-3201 / 2019.II 39



Comovement with real GDP

I Primary interest: how an individual macro variable comoves
with real GDP.

I An economic variable is said to be:
I procyclical if its cycles are positively correlated with the real

GDP cycles,
I countercyclical if its cycles are negatively correlated with the

real GDP cycles,
I acyclical if it is neither procyclical nor countercyclical

©Randall Romero Aguilar, PhD EC-3201 / 2019.II 40



Example 6:
Imports comovement



Imports and GDP are clearly positively correlated, so imports are
procyclical.
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We again observe the positive correlation between imports and
GDP, as a positively sloped straight line would best fit the scatter
plot. Again, imports are procyclical.
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Leading and lagging variables

An important element of comovement is the leading and lagging
relationships that exist in macroeconomic data.

I A leading variable is a macro variable that tends to aid in
predicting the future path of real GDP

I If real GDP helps to predict the future path of a particular
macroeconomic variable, then that variable is said to be a
lagging variable.

I A coincident variable is one which neither leads nor lags real
GDP.
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Idealized cycles in real GDP and two variables
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Some leading indicators

I A knowledge of the regularities in leading relationships among
economic variables can be very useful in macro forecasting
and policymaking.

I Typically, macro variables that efficiently summarize available
information about future macro activity are potentially useful
in predicting the future path of real GDP.

I For example,
I the stock market
I the number of housing starts
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Example 7:
Housing starts as a leading indicator



Percentage deviations in housing starts are divided by 10 so we can
see the comovement better. Housing starts clearly lead real GDP
(note the timing of turning points in particular).
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Consumption

It’s procyclical, coincident, and less variable than GDP.
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Investment

It’s procyclical, coincident, and more variable than GDP.
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Government expenditure

It’s procyclical, coincident, and more variable than GDP.
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Exports of goods (Xb) and services (Xs)
It’s procyclical, coincident, and more variable than GDP.
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Imports of goods (Mb) and services (Ms)
It’s procyclical, coincident, and more variable than GDP.
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Price level

It’s countercyclical, coincident, and less variable than real GDP
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Money supply

It’s procyclical and leading variable, and it is less variable than real
GDP.
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Employment

It’s procyclical, it is a lagging variable, and it is less variable than
real GDP.
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6. Summary of results



Correlation coefficients and variability of cycles

Correlation
Coefficient

Standard Deviation*

PIB 1.00 100.00
C 0.77 93.15
G 0.07 91.76
I 0.82 425.87
Xb 0.41 203.99
Xs 0.57 347.39
Mb 0.74 398.35
Ms 0.48 370.67
IPC -0.26 140.12
M1 0.78 433.14
N 0.19 181.89

* % of standard deviation of GDP

©Randall Romero Aguilar, PhD EC-3201 / 2019.II 55



7. Some warnings against the use of the HP
filter



Business cycle “facts” depend on filtering method!

According to Canova 1998, the practice of solely employing the
HP1600 filter in compiling business cycle statistics is problematic:

1. The idea that there is a single set of facts which is more or less
robust to the exact definition of business cycle is misleading.

2. The empirical characterization of the B.C. obtained with
multivariate detrending methods is different from the one
obtained with univariate procedures.

3. The practice of building theoretical models whose numerical
versions quantitatively match one set of regularities obtained
with a particular concept of cyclical fluctuation warrants a
careful reconsideration.
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U.S. Business Cycle: standard deviations

Filter GNP Consumption Investment Hours Real wage Productivity Capital

HP1600 1.76 0.49 2.82 1.06 0.70 0.49 0.61

HP4 0.55 0.48 2.70 0.89 0.65 0.69 0.14

FOD 1.03 0.51 2.82 0.91 0.98 0.67 0.63

BN 0.43 0.75 3.80 1.64 2.18 1.14 2.64

UC 0.38 0.34 6.72 4.14 2.24 4.09 1.22

LT 4.03 0.69 2.16 0.69 1.71 1.00 1.56

SEGM 2.65 0.52 3.09 1.01 1.10 0.54 0.97

FREQ1 1.78 0.46 3.10 1.20 1.07 0.66 1.41

FREQ2 1.14 0.44 3.00 1.16 1.11 0.69 1.26

MLT 6.01 0.67 2.36 0.46 1.21 1.00 1.05

MINDEX 3.47 0.98 2.65 1.14 1.27 0.72 1.85

COIN 4.15 0.71 3.96 0.75 1.68 1.09 1.30

(absolute for GNP, all others relative to GNP)
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HP has bad statistical properties

Hamilton 2017: Why You Should Never Use the HP Filter?
1. The Hodrick-Prescott (HP) filter introduces spurious dynamic

relations that have no basis in the underlying data-generating
process.

2. Filtered values at the end of the sample are very different
from those in the middle and are also characterized by
spurious dynamics.

3. A statistical formalization of the problem typically produces
values for the smoothing parameter vastly at odds with
common practice.

4. There is a better alternative. A regression of the variable at
date t on the four most recent values as of date t− h achieves
all the objectives sought by users of the HP filter with none of
its drawbacks.
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HP can induce wrong conclusions about series comovement

Cogley and Nason (1995) analyze the spectral properties of the HP
filter

I When measuring the business component of a time series, is it
a good idea to use the Hodrick-Prescott filter?

Yes! if original series is Trend Stationary
No! if original series is Difference-Stationary

I Implications for DSGE models
I When applied to integrated processes, the HP filter can

generate business cycle periodicity and comovement even if
none are present in the original data.

I Standard real business cycle models do not generate business
cycle dynamics in pre-filtered data.

I The business cycles observed in HP filtered data are due to the
filter.
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8. The Baxter-King filter



The Baxter-King filter

I We can imagine that a time series {yt} is the result of adding
up an infinite number of periodic functions, where a given
function repeats itself every p periods (that is, it has a
frequency ω = 2π

p ).
I In the Baxter and King 1999 filter, we start by explicitly

defining the business cycles as the sum of those periodic
functions where p ∈ [pL, pH ].

I This corresponds to periodic functions with frequencies
ω ∈ [ωL, ωH ] =

[
2π
pH

, 2πpL

]
.

I Following Burns-Mitchell definition of the business cycle, we
usually set p ∈ [6, 32] quarters.
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The Baxter-King filter (cont’n)

I The ideal filter would then measure the cycle ct by the
symmetric moving average:

ct =

∞∑
k=−∞

bkyt−k

where the weights are given by

b0 =
ωH − ωL

π
,

bk =
sin(kωH)− sin(kωL)

kπ
for k ̸= 0

I Notice that we cannot use this ideal filter, because we do not
have infinite data!
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The Baxter-King filter (cont’n)

I In practice, we truncate the ideal filter to using only K lags:

ct =

K∑
k=−K

b∗kyt−k

where the adjusted weights b∗k are given by

b∗k = bk − 1
2K+1

K∑
h=−K

bh

I The last term (adjusment) is made so that weights add up to
zero, which is necessary to cancel the trend in the data.
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The Baxter-King filter (cont’n)

I Notice the trade-off in setting the value of K:
I if K is too small, we get far from the ideal filter
I if K is too high, we ”lose” bigger tails in the data.
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FIGURE 2.--CONSTRAINED APPROXIMATE HIGH-PASS FILTERS 

A. Truncated Filter K=4 B. Truncated Filter K=S 

Q) 
(/) 
c: g_ 
m 
>- 0.5 
0 
c: 
Q) 
::i 

l 0 

1.5 

Q) 
(/) 

c: 
0 a. 
(/) 

~ 
>- 0.5 
0 
c: 
Q) 
::i 
C" 0 Q) 

ol:: 

-0.5 

cycles per period 

C. Truncated Filter K=12 

0 0.1 0.2 0.3 0.4 0.5 
cycles per period 

The constraint that ax(O) = 1 may be incorporated as a 
side condition to the minimization problem discussed above. 
Using the results of appendix B, we find the following 
modification of the optimal approximate filter weights, ah, as 
functions of the weights of the ideal low-pass filter, bh, 

ah= bh + 0, (9) 

where 0 is a constant that depends on the specified maximum 
lag length, K. That is, since we require that the filter weights 
sum to one, (!.f=-Kah = 1), the normalizing constant is 0 = 
(1 - "i.f=-xhh)/(2K + 1). Thus, the constraint that the low
pass filter places unit weight at the zero frequency results in 
a relatively simple adjustment of the filter weights. 

Similar adjustments are necessary when constructing 
optimal truncated high-pass and band-pass filters subject to 
constraints on the frequency-zero value of the frequency
response function. As discussed above, the unconstrained 
band-pass filter has weights that are the difference between 
two low-pass filters; i.e., the weights are bh - !z;, where bh is 
the filter weight at lag/lead h for the upper-cutoff filter and !z;, 
is the weight for the lower-cutoff filter. The constrained 
band-pass filter involves the requirement that the sum of its 
weights must be zero. Hence, the weights in the constrained 

to zero (that the frequency response is zero at the zero frequency). 
Accordingly, in appendix B, we study constrained approximation problems 
with the generic constraint <!> = aK(O). 
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D. Truncated Filter K=16 
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optimal band-pass filter are 

(b,, - !z;,) + (0 - _!!), 

0.5 

(10) 

where e is the adjustment coefficient associated with the 
upper-cutoff filter and!! is the adjustment coefficient associ
ated with the lower-cutoff filter. (See appendix B for 
additional discussion of this point.) That is, the constrained 
optimal Kth-order band-pass filter is simply the difference 
between two constrained optimal Kth-order low-pass filters. 
Throughout the remainder of the paper, we consider only 
band-pass filters with this zero-frequency constraint im
posed. We use the notation defined above, BPx(p, q), to 
denote our approximation to the ideal band-pass filter that 
passes cycles between p and q periods. 

F. The Effects of Truncation 

This section explores the effect of changes in the maxi
mum lag length, K, on the shape of the constrained low-pass 
and high-pass filters. If we choose an approximating moving 
average with maximum lag length K, implementing the filter 
means that we lose 2K observations (i.e., K leads and K 
lags). There is no "best" value of K; increasing K leads to a 
better approximation to the ideal filter, but results in more 
lost observations. Thus, the researcher will have to balance 
these opposing factors: The best choice of K in a particular 
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Example 8:
The Baxter-King filter



Suppose we set pL = 6, pH = 32,K = 3. In that case the cycle is
given by:

ct = −0.164yt−3 − 0.028yt−2 + 0.109yt−1 + 0.166yt + . . .

+ 0.109yt+1 − 0.028yt+2 − 0.164yt+3
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Example 9:
Baxter-King vs the Hodrick Prescott



Business cycle in Costa Rica, Hodrick Prescott (λ = 1600) versus
Baxter-King (K = 8, p ∈ [6, 32])
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Business cycle in the United States, Hodrick Prescott (λ = 1600)
versus Baxter-King (K = 8, p ∈ [6, 32])
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