
Lecture 10
Dynamic Programming

Randall Romero Aguilar, PhD
I Semestre 2018
Last updated: June 4, 2018

Universidad de Costa Rica
EC3201 - Teoría Macroeconómica 2

Table of contents

1. Introduction

2. Basics of dynamic programming

3. Dynamic programming: formal setup

4. Stochastic control problems

5. Consumption and financial assets: infinite horizon

6. Consumption and financial assets: finite horizon

7. Consumption and physical investment

Introduction

About this lecture

• We study how to use Bellman equations to solve dynamic
programming problems.

• We consider a consumer who wants to maximize his
lifetime consumption over an infinite horizon, by
optimally allocating his resources through time. Two
alternative models:

1. the consumer uses a financial instrument (say a bank
deposit without overdraft limit) to smooth consumption;

2. the consumer has access to a production technology and
uses the level of capital to smooth consumption.

• To keep matters simple, we assume:
• a logarithmic instant utility function;
• there is no uncertainty.

• To start, we review some math that we’ll need later.

1

Static optimization

• Optimization is a predominant theme in economic
analysis.

• For this reason, the classical calculus methods of finding
free and constrained extrema occupy an important place
in the economist’s everyday tool kit.

• Useful as they are, such tools are applicable only to static
optimization problems.

• The solution sought in such problems usually consists of
a single optimal magnitude for every choice variable.

• It does not call for a schedule of optimal sequential
action.

2

Dynamic optimization

• In contrast, a dynamic optimization problem poses the
question of what is the optimal magnitude of a choice
variable in each period of time within the planning period.

• It is even possible to consider an infinite planning horizon.
• The solution of a dynamic optimization problem would
thus take the form of an optimal time path for every
choice variable, detailing the best value of the variable
today, tomorrow, and so forth, till the end of the planning
period.

3

Basic ingredients

A simple type of dynamic optimization problem would contain
the following basic ingredients:

1. a given initial point and a given terminal point;
2. a set of admissible paths from the initial point to the

terminal point;
3. a set of path values serving as performance indices (cost,

profit, etc.) associated with the various paths; and
4. a specified objective-either to maximize or to minimize

the path value or performance index by choosing the
optimal path.

4

Alternative approaches to dynamic optimization

To find the optimal path, there are three major approaches:

1. the calculus of variations, dating back to the late 17th
century, it works about variations in the state path.

2. optimal control theory, the problem is viewed as having
both a state and a control path, focusing on variations of
the control path.

3. dynamic programming, which embeds the control
problem in a family of control problems, focusing on the
optimal value of the problem (value function).

5

Salient features of dynamic optimization problems

• Although dynamic optimization is mostly couched in
terms of a sequence of time, it is also possible to envisage
the planning horizon as a sequence of stages in an
economic process.

• In that case, dynamic optimization can be viewed as a
problem of multistage decision making.

• The distinguishing feature, however, remains the fact that
the optimal solution would involve more than one single
value for the choice variable.

• The multistage character of dynamic optimization can be
illustrated with a simple discrete example.

6

Example 1:

Multistage decision making

• Suppose that a firm engages in transforming a certain
substance from an initial state A (raw material state) into
a terminal state Z (finished product state) through a
five-stage production process.

• In every stage, the firm faces the problem of choosing
among several possible alternative subprocesses, each
entailing a specific cost.

• The question is: How should the firm select the sequence
of subprocesses through the five stages in order to
minimize the total cost?

7

state

stage0 1 2 3 4 5

A

B

C

D

E

F

G

H

I

J

K

Z
2

4

7

5

2

6

3

4

3

5

2

8

4

6

3

1

2

8

Basics of dynamic programming

The principle of optimality

The dynamic programming approach is based on the principle
of optimality (Bellman, 1957)

An optimal policy has the property that, whatever the
initial state and decision are, the remaining decisions
must constitute an optimal policy with regard to the
state resulting from the first decision.

9

Why dynamic programming?

Dynamic programming is a very attractive method for solving
dynamic optimization problems because

• it offers backward induction, a method that is particularly
amenable to programmable computers, and

• it facilitates incorporating uncertainty in dynamic
optimization models.

10

Example 2:

Solving the problem in example 1

• Let’s use dynamic programming to solve example 1.
• Before doing so, let’s use this problem to introduce some
important concepts:

• choice and state variables
• reward and transition functions
• the value function
• the Bellman equation
• the policy function

11

state

stage0 1 2 3 4 5

A

B

C

D

E

F

G

H

I

J

K

Z
2

4

7

5

2

6

3

4

3

5

2

8

4

6

3

1

2

12

Choice variable In a given state s, firm can choose x among

subprocess {1, 2, . . . , n}.

The reward function r(x, s) returns the cost incurred by

choosing a specific subprocess x when state is s. For example

r(1, A) = 2 r(1, G) = 2

r(2, A) = 4 r(2, G) = 8

The transition function g(x, s) returns the state s′ reached in

next stage if current state is s and current choice is x. E.g.

g(1, A) = B g(1, G) = I

g(2, A) = C g(2, G) = J

13

In this example, we can also think of the choice variable as
deciding what state to go next: x = s′.

The reward function r(s, s′) returns the cost of going from

one state to the next. Examples

r(A,B) = 2 r(G, I) = 2

r(A,C) = 4 r(G, J) = 8

The transition function g(s, s′) is now very simple. E.g.

g(A,B) = B g(G, I) = I

g(A,C) = C g(G, J) = J

14

• Objective Select a sequence of subprocesses through the

five stages in order to minimize the total cost?
• A sequence is a function: for each stage t, it returns the
state of the firm process, st ≡ s(t)

• Then, total cost is a functional: a function that depends
on other function!

• For example

c(ABDGIZ) = 2 + 7 + 3 + 2 + 3 = 17 = c(11111)

c(ABEHKZ) = 2 + 5 + 3 + 6 + 2 = 18 = c(12121)

• In general, the objective function is
4∑

t=0

r(st, xt) subject to st+1 = g(xt, st), t = 0, . . . , 4

15

• The value function Vt(st) measures the best result that

can be achieved in stage t given the current state st.

Vt(st) = min
x0,...,x4

4∑
t=0

r(st, xt) s.t. st+1 = g(xt, st), t = 0, . . . , 4

• The policy function ht(st) returns the best choice that

can be made in current state st and stage t.

ht(st) = argmin
x0,...,x4

4∑
t=0

r(st, xt) s.t. st+1 = g(xt, st), t = 0, . . . , 4

16

The Bellman equation is based on the principle of optimality,

which for the problem implies

Vt(st) = min
xt

{r(xt, st) + Vt+1(st+1)} s.t. st+1 = g(xt, st)

Vt(st) = min
xt

{r(xt, st) + Vt+1 (g(xt, st))}

Notice that, by definition of the policy function,

Vt(st) = r [ht(st), st] + Vt+1 [g (ht(st), st)]

17

Let’s use the Bellman equation to find the minimum cost of
production:

Vt(st) = min
xt

{r(xt, st) + Vt+1 (g(xt, st))}

• Starting from the terminal state Z : cost to complete
product is 0.

• Find the minimum cost from all stage-4 states until
product completion.

• Find the minimum cost from all stage-3 states until
product completion, taking into account the minimum
costs from stage-4 states onward.

• Iterate until reaching stage-0 state

18

state

stage1 2 3 4 5543210

A

14

B

13

C

10

D

8

E

8

F

10

G

5

H

5

I

3

J

1

K

2

Z

0
2

4

7

5

2

6

3

4

3

5

2

8

4

6

3

1

2

Z

I

J

K

G

H

D

E

F

B

C

A

19

Stage State Value Policy
5 Z V5(Z) = 0 h5(Z) = Z

4 K V4(K) = min {2 + V5(Z)} = 2 h4(K) = Z

J V4(J) = min {1 + V5(Z)} = 1 h4(J) = Z

I V4(I) = min {3 + V5(Z)} = 3 h4(I) = Z

3 H V3(H) = min {4 + V4(J), 6 + V4(K)} = 5 h3(H) = J

G V3(G) = min {2 + V4(I), 8 + V4(J)} = 5 h3(G) = I

2 F V2(F) = min {5 + V3(H)} = 10 h2(F) = H

E V2(E) = min {3 + V3(H)} = 8 h2(E) = H

D V2(D) = min {3 + V3(G), 4 + V3(H)} = 8 h2(D) = G

1 C V1(C) = min {2 + V2(E), 6 + V1(F)} = 10 h1(C) = E

B V1(B) = min {7 + V2(D), 5 + V2(E)} = 13 h1(B) = E

0 A V0(A) = min {2 + V1(B), 4 + V1(C)} = 14 h0(A) = C

20

Dynamic programming: formal setup

Dynamic Programming: the basics

We now introduce basic ideas and methods of dynamic
programming (Ljungqvist and Sargent 2004)

• basic elements of a recursive optimization problem
• the Bellman equation
• methods for solving the Bellman equation
• the Benveniste-Scheikman formula

21

Sequential problems

• Let β ∈ (0, 1) be a discount factor.
• We want to choose an infinite sequence of “controls”
{xt}∞t=0 to maximize

∞∑
t=0

βtr(st, xt) (1)

subject to st+1 = g(st, xt), with s0 ∈ R given.
• We assume that r(st, xt) is a concave function and that
the set {(st+1, st) : st+1 ≤ g(st, xt), xt ∈ R} is convex and
compact.

22

Dynamic programming seeks a time-invariant policy function h
mapping the state st into the control xt, such that the
sequence {xt}∞t=0 generated by iterating the two functions

xt = h(st)

st+1 = g(st, xt)

starting from initial condition s0 at t = 0, solves the original
problem. A solution in the form of equations is said to be
recursive.

23

To find the policy function h we need to know the value
function V (s), which expresses the optimal value of the
original problem, starting from an arbitrary initial condition
s ∈ S. Define

V (s0) = max
{xs}∞s=0

∞∑
t=0

βtr(st, xt)

subject to st+1 = g(st, xt), with s0 given.
We do not know V (s0) until after we have solved the problem,
but if we knew it the policy function h could be computed by
solving for each s ∈ S the problem

max
x

{
r(s, x) + βV (s′)

}
, s.t. s′ = g(s, x) (2)

24

Thus, we have exchanged the original problem of finding an
infinite sequence of controls that maximizes expression (1) for
the problem of finding the optimal value function V (s) and a
function h that solves the continuum of maximum problems
(2) —one maximum problem for each value of s.

The function V (s), h(s) are linked by the Bellman equation

V (s) = max
x

{r(s, x) + βV [g(s, x)]} (3)

The maximizer of the RHS is a policy function h(s) that satisfies

V (s) = r[s, h(s)] + βV {g[s, h(s)]} (4)

This is a functional equation to be solved for the pair of
unknown functions V (s), h(s).

25

Some properties

Under various particular assumptions about r and g, it turns
out that

1. The Bellman equation has a unique strictly concave
solution.

2. This solution is approached in the limit as j → ∞ by
iterations on

Vj+1(s) = max
x

{r(s, x) + βVj(s
′)}, s.t. s′ = g(s, x), s given

starting from any bounded and continuous initial V0.
3. There is a unique and time-invariant optimal policy of the

form xt = h(st), where h is chosen to maximize the RHS of
the Bellman equation.

4. Off corners, the limiting value function V is differentiable.

26

Side note: Concave functions

• A real-valued function f on an interval (or, more generally,
a convex set in vector space) is said to be concave if, for
any x and y in the interval and for any t ∈ [0, 1],

f((1− t)x+ ty) ≥ (1− t)f(x) + tf(y)

• A function is called strictly concave if

f((1− t)x+ ty) ≥ (1− t)f(x) + tf(y)

for any t ∈ (0, 1) and x ̸= y.

27

Side note: Concave functions (2)

For a function f : R 7→ R,
this definition merely states
that for every z between x
and y, the point (z, f(z)) on
the graph of f is above the
straight line joining the
points (x, f(x)) and
(y, f(y)).

x

f(x)

y

f(y)

(1− t)f(x) + tf(y)

28

Side note: Fixed points

• A point x∗ is a
fixed-point of function
f if it satisfies
f(x∗) = x∗.

• Notice that
f(f(. . . f(x∗) . . .)) = x∗.

f

x

y = x

x∗0

x∗1

29

Side note: Contraction mappings

A mapping f : X 7→ X

from a metric space X
into itself is said to be a
strong contraction with
modulus δ, if 0 ≤ δ < 1

and

d(f(x), f(y)) ≤ δd(x, y)

for all x and y in X .

f

t

f(t)

|x− y|

|f(x)− f(y)|

x y

30

Side note: Banach Fixed-Point Theorem

If f is a strong contraction on a metric space X , then

• it possesses an unique fixed-point x∗, that is f(x∗) = x∗

• if x0 ∈ X and xi+1 = f(xi), then the xi converge to x∗

Proof: Use x0 and x∗ in the definition of a strong contraction:

d(f(x0), f(x∗)) ≤ δd(x0, x
∗) ⇒

d(x1, x∗) ≤ δd(x0, x
∗) ⇒

d(xk, x∗) ≤ δkd(x0, x
∗) → 0 as k → ∞

31

Example 3:

Searching a fixed point by
function iteration

• Consider finding a fixed point for the function
f(x) = 1 + 0.5x, for x ∈ R.

• It is easy to see that x∗ = 2 is a fixed point:

f(x∗) = f(2) = 1 + 0.5(2) = 2 = x∗

• Suppose we could not solve the equation x = 1 + 0.5x

directly. How could we find the fixed point then?
• Notice that |f ′(x)| = |0.5| < 1, so f is a contraction.

32

By Banach Theorem, if we start from an arbitrary point x0 and
by iteration we form the sequence xj+1 = f(xj), it follows that
limj→∞ xj = x∗.

For example, pick:

x0 = 6

x1 = f(x0) = 1 + 6
2 = 4

x2 = f(x1) = 1 + 4
2 = 3

x3 = f(x2) = 1 + 3
2 = 2.5

x4 = f(x3) = 1 + 2.5
2 = 2.25

...

f

x

f(t)

x0

If we keep iterating, we will get arbitrarily close to the solution
x∗ = 2.

33

First-order necessary condition

Starting with the Bellman equation

V (s) = max
x

{r(s, x) + βV [g(s, x)]}

Since the value function is differentiable, the optimal
x∗ ≡ h(s) must satisfy the first-order condition

rx(s, x
∗) + βV ′{g(s, x∗)}gx(s, x∗) = 0 (FOC)

34

Envelope condition

According to (4): V (s) = r[s, h(s)] + βV {g[s, h(s)]}

If we also assume that the policy function h(s) is differentiable,
differentiation of this expression yields

V ′(s) = rs[s, h(s)] + rx[s, h(s)]h
′(s)

+ βV ′{g[s, h(s)]}
{
gs[s, h(s)] + gx[s, h(s)]h

′(s)
}

Arranging terms, substituting x∗ = h(s) as the optimal policy

V ′(s) = rs(s, x
∗) + βV ′[g(s, x∗)]gs(s, x

∗)

+
{
rx[s, x

∗] + βV ′{g[s, x∗]}gx[s, x∗]
}
h′(s)

35

Envelope condition (cont’n)

The highlighted part cancels out because of (FOC), therefore

V ′(s) = rs(s, x
∗) + βV ′ (s′) gs(s, x∗)

Notice that we could have obtained this result much faster by
taking derivative of

V (s) = r(s, x∗) + βV [g(s, x∗)]

with respect to the state variable s as if the control variable
x∗ ≡ h(s) did not depend on s.

36

Benveniste and Scheinkman formula

In the envelope condition

V ′(s) = rs(s, x
∗) + βV ′ (s′) gs(s, x∗)

when the states and controls can be defined in such a way
that only x appears in the transition equation, i.e.,

s′ = g(x) ⇒ gs(s, x
∗) = 0,

the derivative of the value function becomes

V ′(s) = rs[s, h(s)] (B-S)

This is a version of a formula of Benveniste and Scheinkman.

37

Euler equations

• In many problems, there is no unique way of defining
states and controls

• When the states and controls can be defined in such a
way that s′ = g(x), the (FOC) for the Bellman equation
together with the (B-S) formula implies

rx(st, xt) + βrs(st+1, xt+1)g
′(xt) = 0

• This equation is called an Euler equation.
• If we can write xt as a function of st+1, we can use it to
eliminate xt from the Euler equation to produce a
second-order difference equation in st.

38

Solving the Bellman equation

• In those cases in which we want to go beyond the Euler
equation to obtain an explicit solution, we need to find
the solution V of the Bellman equation (3)

• Given V , it is straightforward to solve (3) successively to
compute the optimal policy.

• However, for infinite-horizon problems, we cannot use
backward iteration.

39

Three computational methods

• There are three main types of computational methods for
solving dynamic programs. All aim to solve the Bellman
equation

• Guess and verify
• Value function iteration
• Policy function iteration

• Each method is easier said than done: it is typically
impossible analytically to compute even one iteration.

• Usually we need computational methods for
approximating solutions: pencil and paper are insufficient.

40

Example 4:

Computer solution of DP models

There are several computer programs available for solving
dynamic programming models:

• The CompEcon toolbox, a MATLAB toolbox accompanying
Miranda and Fackler (2002) textbook.

• The PyCompEcon toolbox, my (still incomplete) Python
version of Miranda and Fackler toolbox.

• Additional examples are available at quant-econ, a
website by Sargent and Stachurski with Python and Julia
scripts.

41

https://mitpress.mit.edu/books/applied-computational-economics-and-finance
http://randall-romero.com/code/compecon/
http://lectures.quantecon.org/

Guess and verify

• This method involves guessing and verifying a solution V
to the Bellman equation.

• It relies on the uniqueness of the solution to the equation
• because it relies on luck in making a good guess, it is not
generally available.

42

Value function iteration

• This method proceeds by constructing a sequence of
value functions and associated policy functions.

• The sequence is created by iterating on the following
equation, starting from V0 = 0, and continuing until Vj has
converged:

Vj+1(s) = max
x

{r(s, x) + βVj [g(s, x)]}

43

Policy function iteration

This method, also known as Howard’s improvement algorithm,
consists of the following steps:

1. Pick a feasible policy, x = h0(s), and compute the value
associated with operating forever with that policy:

Vhj
(s) =

∞∑
t=0

βtr[st, hj(st)]

where st+1 = g[st, hj(st)], with j = 0.
2. Generate a new policy x = hj+1(s) that solves the

two-period problem

max
x

{r(s, x) + βVhj
[g(s, x)]}

for each s.
3. Iterate over j to convergence on steps 1 and 2.

44

Stochastic control problems

Stochastic control problems

• We modify the transition equation and consider the
problem of maximizing

E0

∞∑
t=0

βtr(st, xt) s.t. st+1 = g(st, xt, ϵt+1) (5)

with s0 given at t = 0

• ϵt is a sequence of i.i.d. r.v. : P[ϵt ≤ e] = F (e) for all t
• ϵt+1 is realized at t+ 1, after xt has been chosen at t.
• At time t:

• st is known
• st+j is unknown (j ≥ 1)

45

• The problem is to choose a policy or contingency plan
xt = h(st). The Bellman equation is

V (s) = max
x

{
r(s, x) + β E[V

(
s′
)
| s]

}
• where s′ = g(s, x, ϵ),
• and E{V (s′) |s} =

∫
V (s′) dF (ϵ)

• The solution V (s) of the B.E. can be computed by value
function iteration.

46

• The FOC for the problem is

rx(s, x) + β E
{
V ′ (s′) gx(s, x, ϵ) | s} = 0

• When the states and controls can be defined in such a
way that s does not appear in the transition equation,

V ′(s) = rs[s, h(s)]

• Substituting this formula into the FOC gives the
stochastic Euler equation

rx(s, x) + β E
{
rs(s

′, x′)gx(s, x, ϵ) | s
}
= 0

47

Consumption and financial assets:
infinite horizon

Consumption and financial assets

To ilustrate how dynamic programming works, we consider a
intertemporal consumption problem.

48

The consumer

• Planning horizon: infinite
• Instant utility depends on current consumption: u(ct)
• Constant utility discount rate β ∈ (0, 1)

• Lifetime utility is:

U(c0, c1, . . .) =

∞∑
t=0

βtu(ct)

• The problem: choosing the optimal sequence of values
{c∗t } that will maximize U , subject to a budget constraint.

49

A savings model

The consumer

• is endowed with A0 units of the consumption good,
• does not have income
• can save in a bank deposit, which yields a interest rate r.

The budget constraint is

At+1 = R(At − ct)

where R ≡ 1 + r is the gross interest rate.

50

The value function

• Once he chooses the sequence {c∗t }∞t=0 of optimal
consumption, the maximum utility that he can achieved is
ultimately constraint only by his initial assets A0.

• So define the value function V as the maximum utility the
consumer can get as a function of his initial assets

V (A0) = max
{ct,At+1}∞t=0

∞∑
t=0

βtu(ct)

subject to At+1 = R(At − ct)

51

The consumer problem

Consumer problem:

V (A0) = max
{ct,At+1}∞t=0

∞∑
t=0

βtu(ct) (objective)

At+1 = R(At − ct) ∀t = 0, . . . , T

(budget constraint)

52

Simplifying notation

In what follows, we write the intertemporal restriction as

gt ≡ g(At, At+1, ct) = R(At − ct)−At+1 = 0

53

A recursive approach to solving the problem

V (A0) = max
{ct,At+1}∞t=0

∞∑
t=0

{
βtu(ct) + λtgt

}
= max

{ct,At+1}∞t=0

{
u(c0) + λ0g0 +

∞∑
t=1

[
βtu(ct) + λtgt

]}

= max
{ct,At+1}∞t=0

{
u(c0) + λ0g0 + β

∞∑
t=1

[
βt−1u(ct) + λtgt

]}

“An optimal policy has the property that, whatever the initial state and decision are,
the remaining decisions must constitute an optimal policy with regard to the state
resulting from the first decision.”

= max
c0, A1

{
u(c0) + λ0g0 + β max

{ct+1,At+2}∞t=0

∞∑
t=0

{
βtu(ct+1) + λt+1gt+1

}}
= max

c0, A1

{u(c0) + βV (A1) + λ0 [R(A0 − c0)−A1]} 54

The Bellman equation

Bellman
equation

V (A) = max
c, A′

{u(c) + βV (A′) + λ[R(A− c)−A′]}

• This says that the maximum lifetime utility the consumer
can get must be equal to the sum of current utility plus
the discounted value of the lifetime utility he will get
starting next period.

55

Solving the Bellman equation

The Lagrangian for this problem is

V (A) = max
c, A′

{
u(c) + βV (A′) + λ[R(A− c)−A′]

}
so the FOCs are

u′(c) = λR

βV ′(A′) = λ

}
⇒ u′(c) = βRV ′(A′)

and the envelope condition is

V ′(A) = λR = u′(c)

which implies that

V ′(A′) = u′(c′)

56

The Euler equation

Substitution of the envelope condition in the FOC results in

Euler equation u′(c) = βRu′(c′)

• This says that at the optimum, if the consumer gets one
more unit of the good, he must be indifferent between
consuming it now (getting u′(c)) or saving it (which
increases next-period assets by R) an consuming it later,
getting a discounted value of βRu′(c′).

57

Solving the Euler equation

Notice that the Euler equation can be written

u′
(
At −

At+1

R

)
= βRu′

(
At+1 −

At+2

R

)
which is a second-order nonlinear difference equation. In
principle, it can be solved to obtain the

Policy function
c∗t = h(At) consumption function

At+1 = R[At − h(At)] asset accumulation

58

Consumption and financial assets:
finite horizon

The consumer

• Planning horizon: T (possibly infinite)
• Instant utility depends on current consumption:
u(ct) = ln ct

• Constant utility discount rate β ∈ (0, 1)

• Lifetime utility is:

U(c0, c1, . . . , cT) =

T∑
t=0

βt ln ct

• The problem: choosing the optimal values c∗t that will
maximize U , subject to a budget constraint.

59

A savings model

In this first model, the consumer

• is endowed with A0 units of the consumption good,
• does not have income
• can save in a bank deposit, which yields a interest rate r.

The budget constraint is

At+1 = R(At − ct)

where R ≡ 1 + r is the gross interest rate.

60

The value function

• Once he chooses the sequence {c∗t }Tt=0 of optimal
consumption, the maximum utility that he can achieved is
ultimately constraint only by his initial assets A0 and by
how many periods he lives T + 1.

• So define the value function V as the maximum utility the
consumer can get as a function of his initial assets

V0(A0) = max
{ct}

T∑
t=0

βt ln c∗t

subject to At+1 = R(At − ct)

61

The consumer problem

Consumer problem:

V0(A0) = max
{c,A}

T∑
t=0

βt ln ct (objective)

At+1 = R(At − ct) ∀t = 0, . . . , T (budget constraint)
AT+1 ≥ 0 (leave no debts)

We now solve the problem for special cases t = T , t = T − 1,
t = T − 2. Then we generalize for T = ∞.

62

Solution when t = T

In this case, consumer problem is simply

VT (AT) = max
cT ,AT+1

{ln cT } subject to

AT+1 = R(AT − cT), AT+1 ≥ 0

We need to find cT and AT+1. Substitute cT = AT − AT+1

R in
the objective function:

max
AT+1

ln

[
AT − AT+1

R

]
subject to AT+1 ≥ 0

This function is strictly decreasing on AT+1, so we set AT+1 to
its minimum possible value; given the transversality constraint
we set AT+1 = 0, which implies cT = AT and VT (AT) = lnAT .
In words, in his last period a consumer spends his entire
assets.

63

Solution when t = T − 1

The problem is now

VT−1(AT−1) = {ln cT+1 + β ln cT } subject to
AT = R (AT−1 − cT−1) ,

AT+1 = R(AT − cT), AT+1 ≥ 0

• We now need to find cT−1, cT , AT and AT+1.
• Instead of solving today for all these quantities, we
proceed in two steps:

• today (that is, in T − 1) we solve only for cT−1 and AT

• and next period solving for the remaining cT and AT+1.
• But from the t = T example we learned that a consumer
will spend his entire assets in the last period, so cT = AT

(his remaining assets, which he will choose in the current
period) and AT+1 = 0. 64

So we can rewrite the problem as

VT−1(AT−1) = max
cT−1:T ,AT :T+1

{ln cT−1 + β ln cT }

= max
cT−1,AT

{
ln cT−1 + β max

cT ,AT+1

[ln cT]

}
= max

cT−1,AT

{ln cT−1 + βVT (AT)}

subject to AT = R(AT−1 − cT)

Again, we substitute cT−1 = AT−1 − AT
R and solve the problem

max
AT

{
ln

[
AT−1 −

AT

R

]
+ βVT (AT)

}

65

The first order condition is
1

cT−1

−1

R
+ βV ′

T (AT) = 0 ⇒ 1 = RβcT−1V
′
T (AT)

Since VT (A) = lnA (from the t = T example), then V ′
T (AT) =

1
AT

.
Substitute in the FOC

1 = RβcT−1
1
AT

⇒ A∗
T = Rβc∗T−1

Now substitute in the BC to get Rβc∗T−1 = R(AT−1 − c∗T−1). It
follows that

c∗T−1 =
1

1+βAT−1 ⇒ A∗
T = Rβ

1+βAT−1

66

The value function is

VT−1(AT−1) = ln c∗T−1 + βVT (A
∗
T)

= ln c∗T−1 + β lnA∗
T

= ln c∗T−1 + β ln[Rβc∗T−1]

= (1 + β) ln c∗T−1 + β lnβ + β lnR

=
(1 + β) lnAT−1 − (1 + β) ln(1 + β) + . . .

· · ·+ β lnβ + β lnR

= (1 + β) lnAT−1 + θT−1

where the term θT−1 is just a constant.

67

Solution when t = T − 2

The problem is now

VT−2(AT−2) = max
{
ln cT−2 + β ln cT−1 + β2 ln cT

}
subject to

AT−1 = R(AT−2 − cT−2),

AT = R(AT−1 − cT−1),

AT+1 = R(AT − cT),

AT+1 ≥ 0

68

We will follow the same strategy as before: choose only cT−2

and AT−1 this period, and leave cT−1, cT , AT , AT+1 for next
period.

VT−2(AT−2) = max
cT−2:T ,

AT−1:T+1

{
ln cT−2 + β ln cT−1 + β2 ln cT

}

= max
cT−2,AT−1

ln cT−2 + β max
cT−1:T ,
AT :T+1

[ln cT−1 + β ln cT]

= max

cT−2,AT−1

{ln cT−2 + βVT−1(AT−1)}

69

Again, we substitute cT−2 = AT−2 − AT−1

R and solve the
problem

max
AT−1

{
ln

[
AT−2 −

AT−1

R

]
+ βVT−1(AT−1)

}

The first order condition is now
1

cT−2

−1

R
+ βV ′

T−1(AT−1) = 0 ⇒ 1 = RβcT−2V
′
T−1(AT−1)

But VT−1(A) = (1 + β) lnA+ θT−1 (from the t = T − 1 step). Therefore
V ′
T−1(AT−1) =

1+β
AT−1

. Substitute in the FOC

1 = RβcT−2
1+β
AT−1

⇒ A∗
T−1 = R(β + β2)c∗T−2

70

Now substitute in the budget constraint to get
(1 + β)Rβc∗T−2 = R(AT−2 − c∗T−2). Then

c∗T−2 =
1

1+β+β2AT−2 ⇒ A∗
T−1 =

R(β+β2)
1+β+β2 AT−2

and the value function is

VT−2(AT−2) = ln c∗T−2 + βVT−1(A
∗
T−1)

= ln c∗T−2 + β[(1 + β) ln(A∗
T−1) + θT−1]

= ln c∗T−2 + (β + β2) ln[R(β + β2)c∗T−2] + βθT−1

=
(1 + β + β2) ln c∗T−2 + (β + β2)[lnR+ . . .

· · ·+ ln(β + β2)] + βθT−1

= (1 + β + β2) lnAT−2 + θT−2

where
θT−2 = (β+2β2) lnR+(β+2β2) lnβ− (1+β+β2) ln(1+β+β2)

71

Solution when t = T −K

If we keep iterating, for t = T −K the problem would be

VT−K(AT−K) = max
{
ln cT−K + β ln cT−K+1 + · · ·+ βK ln cT

}
subject to

At+1 = R(At − ct), for t = T −K,T −K + 1, . . . , T

AT+1 ≥ 0

72

We will follow the same strategy as before: choose only cT−K

and AT−K+1 this period, and leave the other variables for next
period.

VT−K(AT−K) =

max
cT−K ,

AT−K+1

ln cT−K + β max
cT−K+1:T ,

AT−K+2:T+1

[ln cT−K+1 + · · ·+ βK−1 ln cT]

= max

cT−K ,
AT−K+1

{ln cT−K + βVT−K+1(AT−K+1)}

73

Again, we substitute cT−K = AT−K − AT−K+1

R and solve the
problem

max
AT−K

{
ln

[
AT−K − AT−K+1

R

]
+ βVT−K+1(AT−K+1)

}
The first order condition is now

1

cT−K

−1

R
+ βV ′

T−K+1(AT−K+1) = 0

which can be written as

1 = RβcT−KV
′
T−K+1(AT−K+1)

But now we don’t know VT−K+1(A), unless we solve for all
intermediate steps. Instead of doing that, we will search for
patterns in our results.

74

Searching for patterns

Let’s summarize the results for the policy function.

t c∗t A∗
t+1

T AT 0AT

T − 1
1

1+βAT−1 Rβ 1
1+βAT−1

T − 2
1

1+β+β2AT−2 Rβ 1+β
1+β+β2AT−2

We could guess that after K iterations:

T −K
1

1+β+···+βKAT−K Rβ 1+β+···+βK−1

1+β+···+βK AT−K

=
1− β

1− βK+1
AT−K Rβ

1− βK

1− βK+1
AT−K

75

The time path of assets

Since AT−K+1 = Rβ 1−βK

1−βK+1AT−K , setting K = T, T − 1:

A1 = Rβ
1− βT

1− βT+1
A0

A2 = Rβ
1− βT−1

1− βT
A1

= (Rβ)2
1− βT−1

1− βT+1
A0

Iterating in this fashion we find that

At = (Rβ)t
1− βT+1−t

1− βT+1
A0

76

The time path of consumption

Since c∗T−K = 1−β
1−βK+1AT−K , setting t = T −K :

Then consumption

c∗t =
1− β

1− βT+1−t
At

=
1− β

1− βT+1−t

[
(Rβ)t

1− βT+1−t

1− βT+1
A0

]
= (Rβ)t

1− β

1− βT+1
A0

ϕ

That is
ln c∗t = t ln(Rβ) + lnϕ

77

The time 0 value function

Substitution of the optimal consumption path in the Bellman
equation give the value function

V0(A0) ≡
T∑
t=0

βt ln c∗t =

T∑
t=0

βt (t ln(Rβ) + lnϕ)

= ln(Rβ)

T∑
t=0

βtt+ lnϕ

T∑
t=0

βt

=
β

1− β

(
1− βT

1− β
− TβT

)
ln(Rβ) +

1− βT+1

1− β
lnϕ

=

β

1− β

(
1− βT

1− β
− TβT

)
ln(Rβ) + . . .

+
1− βT+1

1− β
ln

1− β

1− βT+1
+

1− βT+1

1− β
lnA0

78

From finite horizon to infinite horizon

Our results so far are

At = (Rβ)t
1− βT+1−t

1− βT+1
A0 c∗t = (Rβ)t

1− β

1− βT+1
A0

V0(A0) =
β

1− β

(
1− βT

1− β
− TβT

)
ln(Rβ)+

1− βT+1

1− β
ln

1− β

1− βT+1
+
1− βT+1

1− β
lnA0

Taking the limit as T → ∞

At = (Rβ)tA0 c∗t = (Rβ)t(1− β)A0 = (1− β)At

V0(A0) =
1

1− β
lnA0 +

β lnR+ β lnβ + (1− β) ln(1− β)

(1− β)2 79

The policy function

Policy function
c∗t = (1− β)At consumption function

At+1 = RβAt asset accumulation

• This says that the optimal consumption rule is, in every
period, to consume a fraction 1− β of available initial
assets.

• Over time, assets will increase, decrease or remain
constant depending on how the degree of impatience β
compares to reward to postpone consumption R.

80

Time-variant value function

Now let’s summarize the results for the value function:

t Vt(A)

T lnA

T − 1 (1 + β) lnA+ θT−1

T − 2 (1 + β + β2) lnA+ θT−2

...

Notice that the value function changes each period, but only
because each period the remaining horizon becomes one
period shorter.

81

Time-invariant value function

Remember that in our K iteration,

VT−K(AT−K) = max
cT−K ,

AT−K+1

{ln cT−K + βVT−K+1(AT−K+1)}

With an infinite horizon, the remaining horizon is the same in
T −K and in T −K + 1, so the value function is the same,
precisely the fixed-point of the Bellman equation. Then we can
write

V (AT−K) = max
cT−K ,

AT−K+1

{ln cT−K + βV (AT−K+1)}

or simply
V (A) = max

c,A′

{
ln c+ βV (A′)

}
where a prime indicates a next-period variable

82

The first order condition

Using the budget constraint to substitute consumption

V (A) = max
A′

{
ln

(
A− A′

R

)
+ βV (A′)

}
we obtain the FOC:

1 = RβcV ′(A′)

Despite not knowing V , we can determine its first derivative
using the envelope condition.Thus, from

V (A) = ln

(
A− A′∗

R

)
+ βV (A′∗)

we get
V ′(A) =

1

c

83

The Euler condition

• Because the solution is time-invariant, V ′(A) = 1
c implies

that V ′(A′) = 1
c′ .

• Substitute this into the FOC to obtain the

Euler equation 1 = Rβ
c

c′
= Rβ

u′(c′)

u′(c)

• This says that the marginal rate of substitution of
consumption between any consecutive periods u′(c)

βu′(c′)

must equal the relative price of the later consumption in
terms of the earlier consumption R.

84

Value function iteration

• Suppose we wanted to solve the infinite horizon problem

V (A) = max
c,A′

{
ln c+ βV (A′)

}
subject toA′ = R(A− c)

by value function iteration:

Vj+1(A) = max
c,A′

{
ln c+ βVj(A

′)
}

subject toA′ = R(A− c)

• If we start iterating from V0(A) = 0 , our iterations would
look identical to the procedure we used to solve for the
finite horizon problem!

85

• Then, our iterations would look like

j Vj(A)

0 0

1 lnA

2 (1 + β) lnA+ θ2

3 (1 + β + β2) lnA+ θ3
...

• If we keep iterating, we would expect that the coefficient
on lnA would converge to 1 + β + β2 + · · · = 1

1−β

• However, it is much harder to see a pattern on the θj
sequence.

• Then, we could try now the guess and verify, guessing that
the solution takes the form V (A) = 1

1−β lnA+ θ.

86

Guess and verify

• Our guess: V (A) = 1
1−β lnA+ θ

• Solution must satisfy the FOC: 1 = RβcV ′(A′) and budget
constraint A′ = R(A− c).

• Combining these conditions we find c∗ = (1− β)A and
A′∗ = RβA.

• To be a solution of the Bellman equation, it must be the
case that both sides are equal:

87

LHS RHS

V (A) ln c∗ + βV (A′∗)

1
1−β lnA+ θ

= ln(1− β)A+ β
[
lnA′∗

1−β + θ
]

= ln(1− β)A+ β
[
lnRβA
1−β + θ

]
= 1

1−β lnA+ β
1−β lnRβ + ln(1− β) + βθ

The two sides are equal if and only if

θ = β
1−β lnRβ + ln(1− β) + βθ

That is, if

θ =
β lnR+ β lnβ + (1− β) ln(1− β)

(1− β)2

88

Why the envelope condition works?

The last point in our discussion is to justify the envelope
condition: deriving V (A) pretending that A′∗ did not depend
on A. But we know it does, so write A′∗ = h(A) for some
function h. From the definition of the value function write:

V (A) = ln

[
A− h(A)

R

]
+ βV (h(A))

Take derivative and arrange terms:

V ′(A) =
1

c

[
1− h′(A)

R

]
+ βV ′(h(A))h′(A)

=
1

c
+

[
−1

cR
+ βV ′(A′∗)

]
h′(A)

but the term in square brackets must be zero from the FOC.

89

Consumption and physical
investment

A model with production

In this model

• the consumer is endowed with k0 units of a good that can
be used either for consumption or for the production of
additional good

• we refer to “capital” to the part of the good that is used
for future production

• capital fully depreciates with the production process.
• The lifetime utility of the consumer is again
U(c0, c1, . . . , c∞) =

∑∞
t=0 β

t ln ct,
• The production function is y = Akα, where A > 0 and
0 < α < 1 are parameters.

• The budget constraint is ct + kt+1 = Akαt .

90

The consumer problem

Consumer problem:

V (k0) = max
{c,k′}

∞∑
t=0

βt ln ct (objective)

k′ = Akα − c (resource constraint)

91

The Bellman equation

• In this case, the Bellman equation is

V (k0) = max
c0,k1

{ln c0 + βV (k1)}

• Substitute the constraint c0 = Akα0 − k1 in the BE. To
simplify notation, we drop the time index and use a prime
(as in k′) to denote “next period” variables. Then, BE is

V (k) = max
k′

{
ln(Akα − k′) + βV (k′)

}
• We will solve this equation by value function iteration.

92

Solving Bellman equation by function iteration

• How do we solve the Bellman equation?

V (k) = max
k′

{
ln(Akα − k′) + βV (k′)

}
• This equation involves a functional, where the unknown is
the function V (k).

• Unfortunately, we cannot solve for V directly.
• However, this equation is a contraction mapping (as long
as |β| < 1) that has a fixed point (its solution).

• Let’s pick an initial guess (V0(k) = 0 is a convenient one)
and them iterate over the Bellman equation by*

Vj+1(k) = max
k′

{
ln(Akα − k′) + βVj(k

′)
}

*The j subscript refers to an iteration, not to the horizon.

93

Starting from V0 = 0, the problem becomes:

V1(k) = max
k′

{
ln(Akα − k′) + β × 0

}
Since the objective is decreasing on k′ and we have the
restriction k′ ≥ 0, the solution is simply k′∗ = 0. Then c∗ = Akα

V1(k) = ln c∗ + β × 0

= lnA+ α ln k

This completes our first iteration. Let’s now find V2:

V2(k) = max
k′

{
ln(Akα − k′) + β[lnA+ α ln k′]

}

94

FOC is
1

Akα − k′
=
αβ

k′
⇒ k′∗ =

αβ

1 + αβ
Akα = θ1Ak

α

Then consumption is c∗ = (1− θ1)Ak
α = 1

1+αβAk
α and

V2(k) = ln(c∗) + β lnA+ αβ ln k′∗

= ln(1− θ1) + ln(Akα) + β[lnA+ α ln θ1 + α ln(Akα)]

= (1 + αβ) ln(Akα) + β lnA+ [ln(1− θ1) + αβ ln θ1]

= (1 + αβ) ln(Akα) + ϕ1

This completes the second iteration.

95

Let’s have one more:

V3(k) = max
k′

{
ln(Akα − k′) + β[(1 + αβ) ln(Ak′α) + ϕ1]

}
The FOC is

1

Akα − k′
=
αβ(1 + αβ)

k′

k′∗ =
αβ + α2β2

1 + αβ + α2β2
Akα = θ2Ak

α

Then consumption is c∗ = (1− θ2)Ak
α = 1

1+αβ+α2β2Ak
α

96

Searching for patterns

You might be tired by now of iterating this function. Me too! So
let’s try to find some patterns (unless you really want to iterate
to infinity). Let’s summarize the results for the consumption
policy function.

j c∗

1 (1)−1Akα

2 (1 + αβ)−1Akα

3 (1 + αβ + α2β2)−1Akα

From this table, we could guess that after j iterations, the
consumption policy would look like:

c∗j = (1 + αβ + . . .+ αjβj)−1Akα

97

Iterating to infinity

• To converge to the fixed point, we need to iterate to
infinity.

• Simply take the limit j → ∞ of the consumption function:
since 0 < αβ < 1, the geometric series converges, and so

c∗ = (1− αβ)Akα

k′∗ = αβAkα

98

The time path of capital and consumption

Optimal capital evolves according to:

ln k∗1 = ln (αβA) + α ln k0

= (1− α)ψ + α ln k0 ⇒
ln k∗1 − ψ = α(ln k0 − ψ) ⇒
ln k∗t − ψ = αt(ln k0 − ψ) ⇒

ln k∗t = ψ(1− αt) + αt ln k0

ψ ≡ ln(αβA)

1− α

Optimal consumption is then:

ln c∗t = ln[A(1− αβ)] + α ln k∗t

= ln[A(1− αβ)] + αψ(1− αt) + αt+1 ln k0

99

The value function

The value function is then:

V (k0) ≡
∞∑
t=0

βt ln(c∗t)

=

∞∑
t=0

{
βt ln[A(1− αβ)] + αψβt(1− αt) + βtαt+1 ln k0

}
=

ln[A(1− αβ)]

1− β
+ αψ

[
1

1− β
− 1

1− αβ

]
+
α ln k0
1− αβ

=
ln[A(1− αβ)]

1− β
+ α

ln(αβA)

1− α

[
β(1− α)

(1− β)(1− αβ)

]
+
α ln k0
1− αβ

=
ln[A(1− αβ)]

1− β
+

αβ ln(αβA)

(1− β)(1− αβ)
+
α ln k0
1− αβ

100

Solving by guess and verify

• Since we already know the answer, we’ll guess a function
of the correct form, but leave its coefficients
undetermined.

• This is called the method of undetermined coefficients.
• Thus, we make the guess V (k) = E + F ln k where E and
F are undetermined constants.

• In this case, the Bellman equation is

V (k) = max
k′

{
ln(Akα − k′) + βE + βF ln k′

}
• FOC is

1

Akα − k′
=
βF

k′
⇒ k′∗ = βF

1+βFAk
α ⇒ c∗ = 1

1+βFAk
α

101

Substitute in the Bellman equation is

V (k) = ln c∗ + βE + βF ln k′∗

E + F ln k = ln
(

1
1+βFAk

α
)
+ βE + βF ln

(
βF

1+βFAk
α
)

= ln A
1+βF + α ln k + βE + βF ln AβF

1+βF + αβF ln k

=
{
ln A

1+βF + βE + βF ln AβF
1+βF

}
+ α(1 + βF) ln k

Therefore

F = α(1 + βF) ⇒ F = α
1−αβ

And

(1− β)E = ln A
1+βF + βF ln AβF

1+βF

E = 1
1−β

{
ln[A(1− αβ)] + αβ

1−αβ ln(αβA)
}

1 + βF = 1
1−αβ

βF
1+βF

= αβ

A
1+βF

= A(1 − αβ)

102

Finally, substitute in FOC to get:

k′∗ = βF
1+βFAk

α = αβAkα

c∗ = 1
1+βFAk

α = (1− αβ)Akα

V (k) = E + F ln k

= 1
1−β

{
ln[A(1− αβ)] + αβ

1−αβ ln(αβA)
}
+ α

1−αβ ln k

103

References

Chiang, Alpha C. (1992). Elements of Dynamic Optimization.
McGraw-Hill, Inc.

Ljungqvist, Lars and Thomas J. Sargent (2004). Recursive
Macroeconomic Theory. 2nd ed. MIT Press. isbn:
0-262-12274-X.

Miranda, Mario J. and Paul L. Fackler (2002). Applied
Computational Economics and Finance. MIT Press. isbn:
0-262-13420-9.

Romero-Aguilar, Randall (2016). CompEcon-Python. url:
http://randall-romero.com/code/compecon/.

Sargent, Thomas J. and John Stachurski (2016). Quantitative
Economics. url: http://lectures.quantecon.org/.

104

http://randall-romero.com/code/compecon/
http://lectures.quantecon.org/

	Introduction
	Basics of dynamic programming
	Dynamic programming: formal setup
	Stochastic control problems
	Consumption and financial assets: infinite horizon
	Consumption and financial assets: finite horizon
	Consumption and physical investment

