Universidad de Costa Rica
 EC3201 - Teoría Macroeconómica 2
 Practice 1: The Cobb-Douglas utility function

Randall Romero Aguilar

II Semester 2017
Last updated: August 7, 2017

A consumer problem: 2 goods

A consumer gets utility from consuming goods x and y according to a utility function:

$$
\begin{equation*}
U(x, y) \tag{1}
\end{equation*}
$$

The prices of the goods are p_{x} and p_{y}, and the consumer has available (nominal) income M. The budget constraint is therefore

$$
\begin{equation*}
p_{x} x+p_{y} y=M \tag{2}
\end{equation*}
$$

The consumer wants to get as much utility as possible, given the market prices and his income. The Lagrangean for this optimization problem is

$$
\begin{equation*}
\mathcal{L}(x, y, \lambda)=U(x, y)+\lambda\left(M-p_{x} x-p_{y} y\right) \tag{3}
\end{equation*}
$$

where λ is the Lagrange multiplier associated with the budget constraint. In the optimal allocation $\left(x^{*}, y^{*}\right)$, it must be the case that

$$
\begin{align*}
U_{x}\left(x^{*}, y^{*}\right) & =\lambda p_{x} \tag{4a}\\
U_{y}\left(x^{*}, y^{*}\right) & =\lambda p_{y} \tag{4b}\\
p_{x} x^{*}+p_{y} y^{*} & =M \tag{4c}
\end{align*}
$$

where U_{x} and U_{y} denote the partial derivatives of the utility function with respect to x and to y, respectively.

A Cobb-Douglas utility function

In what follows, we assume that the utility function takes the form of a Cobb-Douglas function:

$$
\begin{equation*}
U(x, y)=x^{\theta} y^{1-\theta} \tag{5}
\end{equation*}
$$

and we define the price index P by

$$
\begin{equation*}
P\left(p_{x}, p_{y}\right) \equiv\left(\frac{p_{x}}{\theta}\right)^{\theta}\left(\frac{p_{y}}{1-\theta}\right)^{1-\theta} \tag{6}
\end{equation*}
$$

where $0<\theta<1$.

1. (a) Prove that both the utility function and the price index are homogeneous of degree one.
(b) Show that the marginal utilities with respect to the goods are given by

$$
U_{x} \equiv \frac{\partial U}{\partial x}=\frac{\theta U}{x} \quad \text { and } \quad U_{y} \equiv \frac{\partial U}{\partial y}=\frac{(1-\theta) U}{y}
$$

[Hint: take logs in both sides of (5)]
(c) Dividing (4a) by (4b), we find that in the optimal allocation it must be the case that

$$
\frac{U_{x}}{U_{y}}=\frac{p_{x}}{p_{y}}
$$

Use this result to show that the optimal allocation x^{*} and y^{*} must satisfy the following condition:

$$
\begin{equation*}
\frac{x^{*}}{y^{*}}=\frac{\theta p_{y}}{(1-\theta) p_{x}} \tag{7}
\end{equation*}
$$

(d) Use (2) and (7) to prove that the demand for goods are given by:

$$
\begin{equation*}
x^{*}\left(p_{x}, p_{y}, M\right)=\frac{\theta M}{p_{x}} \quad y^{*}\left(p_{x}, p_{y}, M\right)=\frac{(1-\theta) M}{p_{y}} \tag{8}
\end{equation*}
$$

Explain what this results implies.
(e) Show that the Lagrange multiplier associated with the budget constraint equals the inverse of the price index, that is: $\lambda^{*}=P^{-1}$. To do so, you can follow these steps:

1. Knowing that U is homogeneous of degree one, find an expression for $\frac{U}{y}$. The result should depend on the ratio $\frac{x}{y}$
2. Use the result of step 1 to compute the marginal utility of y (see question (b)).
3. Use step 2 and equation (4b) to obtain an expression for λ that depends on $\frac{x}{y}$.
4. Finally, replace $\frac{x}{y}$ from step 3 with equation (7).
(f) Use the previous result to show that the partial derivative of the Lagrangean with respect to the nominal income M equals P^{-1}.
(g) Substitute (8) into (5) to prove that the indirect utility function ${ }^{1}$ is given by:

$$
\begin{equation*}
V\left(p_{x}, p_{y}, M\right) \equiv U\left(x^{*}, y^{*}\right)=\frac{M}{P} \tag{9}
\end{equation*}
$$

(h) Compute the derivative of the indirect utility function with respect to M. Compare your result to that of question f .
(i) Using (7), show that elasticity of substitution of the goods is given by 1. That is, prove that

$$
\frac{\Delta \%\left(\frac{x^{*}}{y^{*}}\right)}{\Delta \%\left(\frac{p_{x}}{p_{y}}\right)}=-1
$$

[^0]
[^0]: ${ }^{1}$ The indirect utility function is a particular case of a value function.

