Ejemplo 2 de modelos de variable binaria– Pronosticando crisis bancarias y de balanza de pagos

Universidad de Costa Rica, EC4300 Microeconometría

Autor/a

Randall Romero Aguilar, PhD

Fecha de publicación

17 de abril de 2023

Acerca de este ejemplo
Este ejemplo se basa en un pequeño artículo que escribí mientras cursaba mi doctorado, que a su vez estuvo motivado por Kaminsky (1999) Currency and Banking Crises– The Early Warnings of Distress. Busca determinar la probabilidad de que suceda una crisis bancaria y/o de balanza de pagos en los siguientes dos años en función de varios indicadores macroeconómicos. Los datos utilizados corresponden a siete países de América Latina para el periodo 1970-2005.

1 El modelo

Las variables de este modelo siguen de cerca las definiciones de Kaminsky (1999) Currency and Banking Crises– The Early Warnings of Distress.

Tenemos dos variables dependientes, que modelamos por separado:

  • crisisbank: =1 si hay una crisis bancaria en los siguientes 24 meses
  • crisisbop: =1 si hay una crisis de balanza de pagos en los siguientes 24 meses

Consideramos los siguientes indicadores macroeconómicos como variables explicativas:

  • dolar: Dolarización (nivel)
  • dolarg: Dolarización (Δ%)
  • dom: Crédito doméstico / PIB
  • rdegr: Depósitos domésticos (Δ%)
  • expgr: Exportaciones (Δ%)
  • impgr: Importaciones (Δ%)
  • omega: Déficit comercial (nivel)
  • resgr: Reservas (Δ%)
  • rerres: Tipo de cambio real (desv. tendencia)
  • inf: Inflación (nivel)
  • mmgr: Multiplicador dinero (Δ%)
  • mresg: M2 / Reservas (Δ%)
  • rus: Interés EEUU (nivel)

2 Preparación

En este cuaderno usamos el comando labsumm, que es similar a summarize pero que muestra las etiquetas de las variables en lugar de sus nombres. Para instalarlo, ejecutar net install labsumm.

Los datos están en un libro de Excel, que importamos con import excel.

Código
cd "C:\Users\randa\OneDrive\Documents\Teaching\UCR\EC4300 Microeconometría\Materiales\Binary"
import excel "crisis-binary.xlsx", sheet("Sheet1") firstrow
C:\Users\randa\OneDrive\Documents\Teaching\UCR\EC4300 Microeconometría\Material
> es\Binary
(34 vars, 3,024 obs)

Para simplificar el código, definimos algunas variables globales. Estas variables nos servirán para asegurarnos de que mantenemos consistencia en el listado de variables explicativas, y en el formato de los gráficos.

Código
global regresores dolar dolarg dom expgr impgr inf mmgr mresg omega rdegr rerres resgr  rus 

global noiseplot1 mcolor(blue%18) msymbol(circle) mfcolor(blue) mlcolor(none)

global noiseplot2 yscale(range(0 1)) yline(0.5, lwidth(thick) lpattern(dash) lcolor(cranberry)) ylabel(#3) xtitle(, size(large)) xscale(range(-0.1 0.6)) xlabel(0 "No" 0.5 "Sí", labels labsize(medlarge)) xsize(4) ysize(4)

global kernelplot recast(area) fcolor(%25) ytitle(Densidad) ylabel(, nogrid) xscale(range(0 1)) xlabel(0(0.25)1) legend(order(1 "crisis" 2 "tranquilo") position(2) ring(0)) scheme(meta) xsize(4) ysize(4)

Además, definimos los datos como de panel (indexados por meses y por países).

Código
encode country, generate(pais)
gen meses = ym(year(dateid), month(dateid))
tsset pais meses, monthly

Panel variable: pais (strongly balanced)
 Time variable: meses, 1970m1 to 2005m12
         Delta: 1 month

Finamente, etiquetamos los datos para obtener resultados con las etiquetas apropiadas (serán más fáciles de recordar, al no obligarnos a recordar los nombres de las variables).

Código
label variable dolar "Dolarización (nivel)"
label variable dolarg "Dolarización (Δ%)"
label variable dom "Crédito doméstico / PIB"
label variable rdegr "Depósitos domésticos (Δ%)"
label variable expgr "Exportaciones (Δ%)"
label variable impgr "Importaciones (Δ%)"
label variable omega "Déficit comercial (nivel)"
label variable resgr "Reservas (Δ%)"
label variable rerres "Tipo de cambio real (desv. tendencia)"
label variable inf "Inflación (nivel)"
label variable mmgr "Multiplicador dinero (Δ%)"
label variable mresg "M2 / Reservas (Δ%)"
label variable rus "Interés EEUU (nivel)"


label define crisis 0 "Tranquil times" 1 "Crisis times"
label values crisisbank crisis
label values crisisbop crisis

format %8.4f $regresores crisisbank crisisbop

Conservamos únicamente las variables de interés.

Código
keep crisisbank crisisbop $regresores pais

Obtenemos un cuadro de estadísticas básicas para las variables.

Código
set linesize 90
labsumm, format
                             Variable |   Obs      Mean  Std. Dev.      Min       Max
--------------------------------------+----------------------------------------------
                           crisisbank |  3024    0.1157    0.3200    0.0000    1.0000
                            crisisbop |  3024    0.2189    0.4136    0.0000    1.0000
                Dolarización (nivel) |  3023    0.0852    0.0900    0.0000    0.7979
                  Dolarización (Δ%) |  2939    0.0181    0.0815   -0.6645    0.6328
            Crédito doméstico / PIB |  2785    0.0263    0.2516   -1.0000    2.3342
                  Exportaciones (Δ%) |  2940    0.1391    0.3336   -0.8529    3.4702
                  Importaciones (Δ%) |  2940    0.1472    0.3390   -0.7616    2.3421
                   Inflación (nivel) |  2898    0.0413    0.1144   -0.0968    3.9696
           Multiplicador dinero (Δ%) |  2929    0.0411    0.2840   -0.8667    3.3476
                  M2 / Reservas (Δ%) |  2940    0.0657    0.5398   -0.9478    7.9688
           Déficit comercial (nivel) |  2947   -0.1138    0.4279   -2.0877    0.6573
         Depósitos domésticos (Δ%) |  2821    0.0812    0.3036   -0.8503    3.3052
Tipo de cambio real (desv. tendencia) |  2905    0.0000   31.3367  -53.6713  343.6609
                       Reservas (Δ%) |  2940    0.2654    0.8081   -0.9285   10.8824
                Interés EEUU (nivel) |  3017    6.2596    3.1325    0.8608   17.2877
                              country |  3024         4   2.00033         1         7

Veamos que el cuadro de arriba es más conveniente que el que obtendríamos con summarize

Código
summarize, format

    Variable |        Obs        Mean    Std. dev.       Min        Max
-------------+---------------------------------------------------------
  crisisbank |      3,024      0.1157      0.3200     0.0000     1.0000
   crisisbop |      3,024      0.2189      0.4136     0.0000     1.0000
       dolar |      3,023      0.0852      0.0900     0.0000     0.7979
      dolarg |      2,939      0.0181      0.0815    -0.6645     0.6328
         dom |      2,785      0.0263      0.2516    -1.0000     2.3342
-------------+---------------------------------------------------------
       expgr |      2,940      0.1391      0.3336    -0.8529     3.4702
       impgr |      2,940      0.1472      0.3390    -0.7616     2.3421
         inf |      2,898      0.0413      0.1144    -0.0968     3.9696
        mmgr |      2,929      0.0411      0.2840    -0.8667     3.3476
       mresg |      2,940      0.0657      0.5398    -0.9478     7.9688
-------------+---------------------------------------------------------
       omega |      2,947     -0.1138      0.4279    -2.0877     0.6573
       rdegr |      2,821      0.0812      0.3036    -0.8503     3.3052
      rerres |      2,905      0.0000     31.3367   -53.6713   343.6609
       resgr |      2,940      0.2654      0.8081    -0.9285    10.8824
         rus |      3,017      6.2596      3.1325     0.8608    17.2877
-------------+---------------------------------------------------------
        pais |      3,024           4    2.000331          1          7

3 Estimación de modelos logit

3.1 Crisis bancarias

3.1.1 Estimación

Código
rename crisisbank crisis
logit crisis $regresores ibn.pais, vce(robust) noci noconstant
estimates store bank_logit

Iteration 0:   log pseudolikelihood = -1922.0971  
Iteration 1:   log pseudolikelihood = -863.80044  
Iteration 2:   log pseudolikelihood = -825.02213  
Iteration 3:   log pseudolikelihood = -823.96348  
Iteration 4:   log pseudolikelihood = -823.96177  
Iteration 5:   log pseudolikelihood = -823.96177  

Logistic regression                                    Number of obs =   2,773
                                                       Wald chi2(20) = 1125.81
Log pseudolikelihood = -823.96177                      Prob > chi2   =  0.0000

-----------------------------------------------------
             |               Robust
      crisis | Coefficient  std. err.      z    P>|z|
-------------+---------------------------------------
       dolar |   5.576028    .700061     7.97   0.000
      dolarg |  -.4979393   .9440406    -0.53   0.598
         dom |   2.021968   .3337248     6.06   0.000
       expgr |  -.1659892   .2142752    -0.77   0.439
       impgr |  -1.511297   .2634938    -5.74   0.000
         inf |  -1.809969   .8032339    -2.25   0.024
        mmgr |   .1332535   .1727431     0.77   0.440
       mresg |   .5647882   .1395775     4.05   0.000
       omega |  -1.151355   .1910975    -6.02   0.000
       rdegr |  -.9789297   .2571707    -3.81   0.000
      rerres |  -.0031407   .0025129    -1.25   0.211
       resgr |  -.0762417   .1229349    -0.62   0.535
         rus |   .0985633    .018055     5.46   0.000
             |
        pais |
        ARG  |  -2.287594    .213332   -10.72   0.000
        BRA  |   -3.09899   .2442557   -12.69   0.000
        CHI  |  -4.901125   .2828562   -17.33   0.000
        COL  |  -2.571798   .2166813   -11.87   0.000
        MEX  |  -3.371177   .2877089   -11.72   0.000
        PER  |  -3.783422   .2379317   -15.90   0.000
        VEN  |  -4.051092   .3361182   -12.05   0.000
-----------------------------------------------------

3.1.2 Efectos marginales

Código
margins, dydx(*) atmeans noci post
estimates store margin_bank_atmeans
estimates restore bank_logit

margins, dydx(*) noci post
estimates store margin_bank
estimates restore bank_logit

Conditional marginal effects                             Number of obs = 2,773
Model VCE: Robust

Expression: Pr(crisis), predict()
dy/dx wrt:  dolar dolarg dom expgr impgr inf mmgr mresg omega rdegr rerres resgr rus
            2.pais 3.pais 4.pais 5.pais 6.pais 7.pais
At: dolar  =  .0911226 (mean)
    dolarg =  .0190081 (mean)
    dom    =  .0266963 (mean)
    expgr  =  .1372507 (mean)
    impgr  =   .140755 (mean)
    inf    =  .0425624 (mean)
    mmgr   =  .0428351 (mean)
    mresg  =  .0650741 (mean)
    omega  = -.1289817 (mean)
    rdegr  =  .0813646 (mean)
    rerres =   .683406 (mean)
    resgr  =  .2681343 (mean)
    rus    =  6.248104 (mean)
    1.pais =  .1471331 (mean)
    2.pais =  .1081861 (mean)
    3.pais =  .1489362 (mean)
    4.pais =  .1489362 (mean)
    5.pais =  .1489362 (mean)
    6.pais =  .1489362 (mean)
    7.pais =  .1489362 (mean)

-----------------------------------------------------
             |            Delta-method
             |      dy/dx   std. err.      z    P>|z|
-------------+---------------------------------------
       dolar |   .3878804    .051841     7.48   0.000
      dolarg |  -.0346377   .0658742    -0.53   0.599
         dom |   .1406524   .0227766     6.18   0.000
       expgr |  -.0115466   .0149594    -0.77   0.440
       impgr |   -.105129   .0176972    -5.94   0.000
         inf |  -.1259053   .0557227    -2.26   0.024
        mmgr |   .0092694   .0120071     0.77   0.440
       mresg |   .0392879   .0098893     3.97   0.000
       omega |  -.0800907   .0125584    -6.38   0.000
       rdegr |  -.0680964   .0178888    -3.81   0.000
      rerres |  -.0002185   .0001728    -1.26   0.206
       resgr |  -.0053035   .0085807    -0.62   0.537
         rus |   .0068563   .0012517     5.48   0.000
             |
        pais |
        BRA  |  -.1030989   .0273864    -3.76   0.000
        CHI  |  -.1882527   .0238854    -7.88   0.000
        COL  |  -.0428045   .0367298    -1.17   0.244
        MEX  |  -.1258528    .028143    -4.47   0.000
        PER  |  -.1517599   .0263421    -5.76   0.000
        VEN  |  -.1641821   .0243284    -6.75   0.000
-----------------------------------------------------
Note: dy/dx for factor levels is the discrete change
      from the base level.
(results bank_logit are active now)

Average marginal effects                                 Number of obs = 2,773
Model VCE: Robust

Expression: Pr(crisis), predict()
dy/dx wrt:  dolar dolarg dom expgr impgr inf mmgr mresg omega rdegr rerres resgr rus
            2.pais 3.pais 4.pais 5.pais 6.pais 7.pais

-----------------------------------------------------
             |            Delta-method
             |      dy/dx   std. err.      z    P>|z|
-------------+---------------------------------------
       dolar |   .4868221   .0621842     7.83   0.000
      dolarg |  -.0434732    .082635    -0.53   0.599
         dom |   .1765304   .0286189     6.17   0.000
       expgr |  -.0144919   .0187637    -0.77   0.440
       impgr |  -.1319457   .0224053    -5.89   0.000
         inf |  -.1580216   .0701566    -2.25   0.024
        mmgr |   .0116339   .0151103     0.77   0.441
       mresg |   .0493095   .0121184     4.07   0.000
       omega |  -.1005205   .0157516    -6.38   0.000
       rdegr |  -.0854667   .0224627    -3.80   0.000
      rerres |  -.0002742   .0002185    -1.25   0.210
       resgr |  -.0066564    .010754    -0.62   0.536
         rus |   .0086052   .0015531     5.54   0.000
             |
        pais |
        BRA  |   -.102001   .0269919    -3.78   0.000
        CHI  |   -.211556   .0222333    -9.52   0.000
        COL  |  -.0402919   .0348531    -1.16   0.248
        MEX  |   -.127607   .0279135    -4.57   0.000
        PER  |  -.1592223   .0261813    -6.08   0.000
        VEN  |  -.1756954   .0247131    -7.11   0.000
-----------------------------------------------------
Note: dy/dx for factor levels is the discrete change
      from the base level.
(results bank_logit are active now)

3.1.3 Probabilidad pronosticada de crisis

Código
predict phatbank, pr
(251 missing values generated)
Código
kdensity phatbank if crisis==1, $kernelplot addplot((kdensity phatbank if crisis==0)) title(Probabilidad pronosticada de crisis bancaria) name(bank_kdensity, replace)

3.1.4 Clasificación

Código
estat classification

Logistic model for crisis

              -------- True --------
Classified |         D            ~D  |      Total
-----------+--------------------------+-----------
     +     |        85            32  |        117
     -     |       265          2391  |       2656
-----------+--------------------------+-----------
   Total   |       350          2423  |       2773

Classified + if predicted Pr(D) >= .5
True D defined as crisis != 0
--------------------------------------------------
Sensitivity                     Pr( +| D)   24.29%
Specificity                     Pr( -|~D)   98.68%
Positive predictive value       Pr( D| +)   72.65%
Negative predictive value       Pr(~D| -)   90.02%
--------------------------------------------------
False + rate for true ~D        Pr( +|~D)    1.32%
False - rate for true D         Pr( -| D)   75.71%
False + rate for classified +   Pr(~D| +)   27.35%
False - rate for classified -   Pr( D| -)    9.98%
--------------------------------------------------
Correctly classified                        89.29%
--------------------------------------------------
Código
generate banknoise = 0.5*crisis + runiform(-0.1,0.1)

twoway (scatter phatbank banknoise, $noiseplot1), $noiseplot2 xtitle(¿Crisis bancaria?) name(bank_clasifica, replace)

3.1.5 Sensibilidad vs especificidad

Código
lsens, legend(position(3) ring(0) col(1)) name(bank_lsens, replace) xsize(4) ysize(4)

3.1.6 Curva ROC

Código
lroc, name(bank_lroc, replace) xsize(4) ysize(4)

Logistic model for crisis

Number of observations =     2773
Area under ROC curve   =   0.8106

Código
rename crisis crisisbank

3.2 Crisis de balanza de pagos

3.2.1 Estimación

Código
rename crisisbop crisis
logit crisis $regresores ibn.pais, vce(robust) noci noconstant
estimates store bop_logit

Iteration 0:   log pseudolikelihood = -1922.0971  
Iteration 1:   log pseudolikelihood = -1215.3122  
Iteration 2:   log pseudolikelihood =  -1196.974  
Iteration 3:   log pseudolikelihood = -1196.6378  
Iteration 4:   log pseudolikelihood = -1196.6375  
Iteration 5:   log pseudolikelihood = -1196.6375  

Logistic regression                                    Number of obs =   2,773
                                                       Wald chi2(20) = 1058.62
Log pseudolikelihood = -1196.6375                      Prob > chi2   =  0.0000

-----------------------------------------------------
             |               Robust
      crisis | Coefficient  std. err.      z    P>|z|
-------------+---------------------------------------
       dolar |  -9.589695    .874495   -10.97   0.000
      dolarg |    1.72331   .7790785     2.21   0.027
         dom |   1.698562   .3100398     5.48   0.000
       expgr |    -.33557   .1769484    -1.90   0.058
       impgr |  -.5027071   .1888624    -2.66   0.008
         inf |    2.02608   1.890753     1.07   0.284
        mmgr |   .3518654   .1780368     1.98   0.048
       mresg |   .9852773    .151289     6.51   0.000
       omega |   .2098591   .1690642     1.24   0.214
       rdegr |   -1.20878   .2454483    -4.92   0.000
      rerres |  -.0002649   .0025736    -0.10   0.918
       resgr |   .2095455   .0926526     2.26   0.024
         rus |   .1296012   .0160628     8.07   0.000
             |
        pais |
        ARG  |  -1.750955    .225005    -7.78   0.000
        BRA  |  -.3920284   .2136607    -1.83   0.067
        CHI  |  -2.076249   .2228283    -9.32   0.000
        COL  |  -1.944423   .2121107    -9.17   0.000
        MEX  |  -1.171794   .1973245    -5.94   0.000
        PER  |  -2.345546   .2431813    -9.65   0.000
        VEN  |  -1.118656   .1590713    -7.03   0.000
-----------------------------------------------------

3.2.2 Efectos marginales

Código
margins, dydx(*) atmeans noci post
estimates store margin_bop_atmeans
estimates restore bop_logit

margins, dydx(*) noci post
estimates store margin_bop
estimates restore bop_logit

Conditional marginal effects                             Number of obs = 2,773
Model VCE: Robust

Expression: Pr(crisis), predict()
dy/dx wrt:  dolar dolarg dom expgr impgr inf mmgr mresg omega rdegr rerres resgr rus
            2.pais 3.pais 4.pais 5.pais 6.pais 7.pais
At: dolar  =  .0911226 (mean)
    dolarg =  .0190081 (mean)
    dom    =  .0266963 (mean)
    expgr  =  .1372507 (mean)
    impgr  =   .140755 (mean)
    inf    =  .0425624 (mean)
    mmgr   =  .0428351 (mean)
    mresg  =  .0650741 (mean)
    omega  = -.1289817 (mean)
    rdegr  =  .0813646 (mean)
    rerres =   .683406 (mean)
    resgr  =  .2681343 (mean)
    rus    =  6.248104 (mean)
    1.pais =  .1471331 (mean)
    2.pais =  .1081861 (mean)
    3.pais =  .1489362 (mean)
    4.pais =  .1489362 (mean)
    5.pais =  .1489362 (mean)
    6.pais =  .1489362 (mean)
    7.pais =  .1489362 (mean)

-----------------------------------------------------
             |            Delta-method
             |      dy/dx   std. err.      z    P>|z|
-------------+---------------------------------------
       dolar |  -1.343759   .1231165   -10.91   0.000
      dolarg |   .2414794    .109476     2.21   0.027
         dom |   .2380116   .0422329     5.64   0.000
       expgr |  -.0470219   .0246548    -1.91   0.056
       impgr |   -.070442   .0262885    -2.68   0.007
         inf |    .283905   .2636708     1.08   0.282
        mmgr |   .0493052   .0249174     1.98   0.048
       mresg |   .1380623   .0220845     6.25   0.000
       omega |   .0294066   .0237446     1.24   0.216
       rdegr |  -.1693807   .0342112    -4.95   0.000
      rerres |  -.0000371   .0003603    -0.10   0.918
       resgr |   .0293626    .013044     2.25   0.024
         rus |   .0181604   .0023233     7.82   0.000
             |
        pais |
        BRA  |   .2545243   .0375927     6.77   0.000
        CHI  |   -.036317   .0264694    -1.37   0.170
        COL  |   -.022652   .0328935    -0.69   0.491
        MEX  |   .0882344    .034709     2.54   0.011
        PER  |  -.0601932   .0254236    -2.37   0.018
        VEN  |   .0979301   .0351546     2.79   0.005
-----------------------------------------------------
Note: dy/dx for factor levels is the discrete change
      from the base level.
(results bop_logit are active now)

Average marginal effects                                 Number of obs = 2,773
Model VCE: Robust

Expression: Pr(crisis), predict()
dy/dx wrt:  dolar dolarg dom expgr impgr inf mmgr mresg omega rdegr rerres resgr rus
            2.pais 3.pais 4.pais 5.pais 6.pais 7.pais

-----------------------------------------------------
             |            Delta-method
             |      dy/dx   std. err.      z    P>|z|
-------------+---------------------------------------
       dolar |  -1.332323   .1220498   -10.92   0.000
      dolarg |   .2394243   .1080927     2.21   0.027
         dom |    .235986   .0420344     5.61   0.000
       expgr |  -.0466217   .0244767    -1.90   0.057
       impgr |  -.0698425   .0259955    -2.69   0.007
         inf |   .2814889   .2618264     1.08   0.282
        mmgr |   .0488856   .0247312     1.98   0.048
       mresg |   .1368873   .0203387     6.73   0.000
       omega |   .0291563   .0235405     1.24   0.216
       rdegr |  -.1679392   .0336569    -4.99   0.000
      rerres |  -.0000368   .0003574    -0.10   0.918
       resgr |   .0291127   .0128264     2.27   0.023
         rus |   .0180059   .0022163     8.12   0.000
             |
        pais |
        BRA  |   .2237431   .0320667     6.98   0.000
        CHI  |  -.0385945   .0277888    -1.39   0.165
        COL  |  -.0237074   .0344942    -0.69   0.492
        MEX  |   .0841388   .0328992     2.56   0.011
        PER  |  -.0659074   .0272463    -2.42   0.016
        VEN  |   .0928011   .0328409     2.83   0.005
-----------------------------------------------------
Note: dy/dx for factor levels is the discrete change
      from the base level.
(results bop_logit are active now)
Código
predict phatbop, pr
(251 missing values generated)
Código
kdensity phatbop if crisis==1, $kernelplot addplot((kdensity phatbop if crisis==0)) title(Probabilidad pronosticada de crisis de balanza de pagos) name(bop_kdensity, replace)

3.2.3 Clasificación

Código
estat classification

Logistic model for crisis

              -------- True --------
Classified |         D            ~D  |      Total
-----------+--------------------------+-----------
     +     |       179           142  |        321
     -     |       465          1987  |       2452
-----------+--------------------------+-----------
   Total   |       644          2129  |       2773

Classified + if predicted Pr(D) >= .5
True D defined as crisis != 0
--------------------------------------------------
Sensitivity                     Pr( +| D)   27.80%
Specificity                     Pr( -|~D)   93.33%
Positive predictive value       Pr( D| +)   55.76%
Negative predictive value       Pr(~D| -)   81.04%
--------------------------------------------------
False + rate for true ~D        Pr( +|~D)    6.67%
False - rate for true D         Pr( -| D)   72.20%
False + rate for classified +   Pr(~D| +)   44.24%
False - rate for classified -   Pr( D| -)   18.96%
--------------------------------------------------
Correctly classified                        78.11%
--------------------------------------------------
Código
generate bopnoise = 0.5*crisis + runiform(-0.1,0.1)

twoway (scatter phatbank bopnoise, $noiseplot1), $noiseplot2 xtitle(¿Crisis de balanza de pagos?) name(bop_clasifica, replace)

3.2.4 Sensibilidad vs especificidad

Código
lsens, legend(position(3) ring(0) col(1)) name(bop_lsens, replace) xsize(4) ysize(4)

3.2.5 Curva ROC

Código
lroc, name(bop_lroc, replace) xsize(4) ysize(4)

Logistic model for crisis

Number of observations =     2773
Area under ROC curve   =   0.8095

Código
rename crisis crisisbop

3.3 Cuadros y gráficos comparativos

Código
etable, column(estimates) estimates(margin_bank_atmeans margin_bank margin_bop_atmeans margin_bop)  cstat(_r_b) keep($regresores) title(Efectos marginales) export(crisis-margins.tex, tableonly replace) showstars showstarsnote stars(.10 "*" .05 "**" .01 "***", attach(_r_b))

Efectos marginales
---------------------------------------------------------------------------------------------------
                                      margin_bank_atmeans margin_bank margin_bop_atmeans margin_bop
---------------------------------------------------------------------------------------------------
Dolarización (nivel)                        0.388 ***       0.487 ***     -1.344 ***     -1.332 ***
Dolarización (Δ%)                          -0.035          -0.043          0.241 **       0.239 ** 
Crédito doméstico / PIB                     0.141 ***       0.177 ***      0.238 ***      0.236 ***
Exportaciones (Δ%)                         -0.012          -0.014         -0.047 *       -0.047 *  
Importaciones (Δ%)                         -0.105 ***      -0.132 ***     -0.070 ***     -0.070 ***
Inflación (nivel)                          -0.126 **       -0.158 **       0.284          0.281    
Multiplicador dinero (Δ%)                   0.009           0.012          0.049 **       0.049 ** 
M2 / Reservas (Δ%)                          0.039 ***       0.049 ***      0.138 ***      0.137 ***
Déficit comercial (nivel)                  -0.080 ***      -0.101 ***      0.029          0.029    
Depósitos domésticos (Δ%)                  -0.068 ***      -0.085 ***     -0.169 ***     -0.168 ***
Tipo de cambio real (desv. tendencia)      -0.000          -0.000         -0.000         -0.000    
Reservas (Δ%)                              -0.005          -0.007          0.029 **       0.029 ** 
Interés EEUU (nivel)                        0.007 ***       0.009 ***      0.018 ***      0.018 ***
Number of observations                       2773            2773           2773           2773    
---------------------------------------------------------------------------------------------------
*** p<.01, ** p<.05, * p<.1
(collection ETable exported to file crisis-margins.tex)
Código
format %6.4f phatbank phatbop

summarize crisisbank phatbank crisisbop phatbop, format 
label variable phatbank "Prob(crisis bancaria)"
label variable phatbop "Prob(crisis balanza de pagos)"

    Variable |        Obs        Mean    Std. dev.       Min        Max
-------------+---------------------------------------------------------
  crisisbank |      3,024      0.1157      0.3200     0.0000     1.0000
    phatbank |      2,773      0.1262      0.1516     0.0000     0.9266
   crisisbop |      3,024      0.2189      0.4136     0.0000     1.0000
     phatbop |      2,773      0.2322      0.1985     0.0008     0.9993
Código
graph combine bank_kdensity bop_kdensity, xsize(8) ysize(4)
graph export crisis_kdensity.pdf, replace
file crisis_kdensity.pdf saved as PDF format

Código
graph combine bank_lsens bop_lsens, xsize(8) ysize(4)
graph export crisis_lsens.pdf, replace
file crisis_lsens.pdf saved as PDF format

Código
graph combine bank_lroc bop_lroc, xsize(8) ysize(4)
graph export crisis_lroc.pdf, replace
file crisis_lroc.pdf saved as PDF format

Código
graph combine bank_clasifica bop_clasifica, xsize(8) ysize(4)
graph export crisis_clasifica.pdf, replace
file crisis_clasifica.pdf saved as PDF format