R ESCUELAG:
UC ECONOMIA

UNIVERSIDAD ot COSTARICA

UNIVERSIDAD pe COSTARICA

Lecture 6

Numerical Integration and Differentiation

Randall Romero Aguilar, PhD
This draft: October 10, 2018

Universidad de Costa Rica
SP6534 - Economia Computacional

Table of contents

1. Introduction

2. Area Under a Curve

3. Computing Expectations

4. Monte Carlo Simulation

5. Quasi-Monte Carlo Integration

6. Numerical Differentiation

Introduction

A Statistics Problem

What is the probability that a standard normal random
variable Z will realize a value less than or equal to z?

Pr(Z < 2)

V4

Figure 1: Standard Normal Density

- The probability is the area under the standard normal
probability density function to the left of z:

Pr(Z < z) = \/12? /_; exp <—t22> dt

- Evaluate this integral for z = 1.

- Are you having difficulties?

- No surprise, since the integral lacks closed-form.

- Check the table in the back of your statistics book.
- It says the probability is 0.841.

- How did the author get this value?

A Risk Problem

- An agent’s utility of income y exhibits constant absolute
risk aversion a > 0:

u(y) = —exp(—ay).

- The agent faces uncertain income g that is lognormally
distributed with log mean x and log variance o2.

- Would this agent accept a certain income y* in place of
his uncertain income 47?

- According to expected utility theory, yes, provided

u(y®) > Eu(y).

- To answer the question definitively, we must evaluate the
agent’s expected utility with the uncertain income:

Bu(f) = —— /OOO ;exp (—(h’(y)_“)z _ ay) dy.

oV 2 202

- Evaluate this expression when =0, 02 = 0.1, and a = 2.
- Are you having difficulties?

- No surprise, since the integral lacks closed-form.

Numerical Quadrature

- In economics, we encounter two types of integration
problems:
- Evaluate the area under a curve, as in the “statistics”
example.
- Evaluate the expectation of a function of a random
variable, as in the “risk” example.

- In many applications, the definite integral lacks an
equivalent closed-form expression or is otherwise
analytically intractable.

- However, such integrals typically may be easily and
accurately evaluated numerically using quadrature
methods.

- We discuss three classes of quadrature methods:

- Newton-Cotes rules
- Gaussian quadrature
- Monte Carlo simulation

- All these methods have one thing in common: the definite
integral is approximated using a weighted sum of function
values at prescribed nodes, a simple task on a computer.

- Methods differ only in how the weights and nodes are
chosen.

Area Under a Curve

Consider finding the area under a continuous real-valued
function f over a bounded interval [a, b]:

b
A:/ f(x) dx
a
3 quadrature methods are commonly used to compute areas:

- Trapezoid rule
- Simpson’s rule
- Gauss-Legendre quadrature

Trapezoid Rule

- The trapezoid rule approximates the area under a
function f with the area under a piecewise linear
approximation to f, .

- Partition the interval [a, b] into n subintervals of equal
length h = (b — a)/n defined by the nodes x; = a + ih,
1=0,1,...,n.

- Compute the function values y; = f(x;) at the nodes.

- Construct f by connecting successive points (z;,;) on the
graph of f with straight lines.

- The area under f is a series of trapezoids, giving the
trapezoid rule its name.

Xp=a X1 X>=b

Figure 3: Trapezoid Rule, n = 2

Xo=a

X1

X2

Figure 4: Trapezoid Rule,n = 4

X3

Xa=b

10

Xo=a

X1

X2

X3 Xa X5

Figure 5: Trapezoid Rule,n = 8

X6

X7

Xg=b

"

- The area of the i** trapezoid is:
Ti h
[F@) dz = SlfGwin) + @),

- Summing the areas of all n trapezoids yields the trapezoid

rule: \ .
/ Fe) do S ws fa)
a i=0

where
{ h/2 i=0,i=n
w; =

h otherwise

12

- The trapezoid rule is simple and robust.

- If fis smooth, the trapezoid rule affords an
approximation error proportional to h2.

- Doubling the number of nodes will reduce the
approximation error by a factor of four.

13

Simpson’s Rule

- Simpson’s rule approximates the area under a function f
with the area under a piecewise quadratic approximation
to f, f.

- Partition the interval [a, b] into n subintervals of equal
length h = (b — a)/n defined by the nodes z; = a + ih,

1 =20,1,...,n, neven.

- Compute the function values y; = f(x;) at the nodes.

- Form a piecewise quadratic approximation f for f by
interpolating successive triplets of graph points
(xi—2,Yi—2), (Ti-1,Yi—1), and (x;,y;), 1 = 2,4, ..., n, with
quadratic functions.

14

Xo=a

X1

Figure 6: Simpson’s Rule, n = 2

X>=b

15

Xo=a

X1

X2

Figure 7: Simpson’s Rule, n = 4

X3

Xa=b

16

Xo=a

X1

X2

X3 Xa X5

Figure 8: Simpson’s Rule, n = 8

X6

X7

Xg=b

- The area under f over subintervals i — 1 and 4, for
1=2,4,...,n,Is:

[Fw) do = 3 (@) + 4 wia) + S(a2).

- Summing across successive pairs of subintervals yields
Simpson’s rule:

b n
/ﬂ@M%ZwWQ
a i=0

where
h/3 i=0,i=n
w; =4 4h/3 0<i<n,ieven
2h/3 0<i<n,iodd

- If fis smooth, Simpson’s rule affords an approximation
error proportional to h*, the square of the trapezoid rule
error.

- Doubling the number of nodes will reduce the
approximation error by a factor of sixteen.

- Simpson’s rule is preferred to the trapezoid rule because
it is almost as simple, but far more accurate.

19

Newton-Cotes Rules

- The trapezoid rule and Simpson’s rule are examples of
Newton-Cotes rules, which replace the integrand with a
piecewise polynomial of low degree.

- Newton-Cotes rules based on piecewise polynomials of
third and higher degree can be defined, but are not
practical.

20

Gauss-Legendre Quadrature

- Gauss-Legendre quadrature employs different logic to
compute the area under a curve f over a bounded
interval [a, b].

- Specifically, the n quadrature nodes z; and n quadrature
weights w; are chosen to exactly integrate polynomials of
degree 2n — 1 or less.

- This requirement imposes the 2n conditions

b n
/xkd:c:Zwia:f, k=0,....,2n—1,
a i=1

which may be solved for the n nodes and n weights using
nonlinear equation methods.

21

- Unlike Newton-Cotes rules, Gauss-Legendre nodes are not
uniformly spaced and do not include the integration
limits.

- For example, the order-4 Gauss-Legendre nodes over the
interval [0, 1] are 0.069, 0.330, 0.670, and 0.931 and the
corresponding weights are 0174, 0.326, 0.326, and 0174.

22

Gauss-Legendre quadrature outperforms Newton-Cotes rules
if the integrand f is smooth, but otherwise may perform no
better or worse.

For example, consider integrating e=* and +/|z| on [—1,1].

e VixI

0 0
-1 0 1 -1 0 1

Figure 9: A smooth and a non-smooth function

23

Integral Nodes Trapezoid Simpson’s Gauss-
n rule rule Legendre

[t e vda 5 17 -35 9.5
1 -2.5 -5]1 -14.3

21 -3 -6.3 -14.7

31 3.4 -7.0 -inf

[t V]xlde 5 1.0 1.4 0.9
1 -1.6 -1.3 -1.4

21 -2.0 2.4 -1.8

31 -2.3 =2 -2.0

Table 1: Log10 Definite Integral Relative Approximation Errors

24

CompEcon Utilities

- CompkEcon utilities gnwtrap, gnwsimp and gnwlege
generate the trapezoid rule, Simpson’s rule, and
Gauss-Legendre nodes and weights as follows

X, w = gnwtrap(n,a,b)
X, w = gnwsimp(n,a,b)
X, w = gnwlege(n,a,b)

- Input: n the number of nodes, a the left integration limit,
and b the right integration limit.

- Output: x and w, the n-vectors of quadrature nodes and
weights, respectively.

25

Example 1:

Computing a probability

To compute the probability that a standard normal random
variable is less than 1, execute the script

from numpy import exp, sqrt, pi
from compecon import gnwsimp

f = lambda x: exp(-x*%2/2) / sqrt(2=pi)
X, w = gnwsimp(11, 0, 1)
prob = 0.5 + w.dot(f(x))

The computed answer, 0.8413, is correct to four significant
digits.

This is how the table in your statistics book was computed.

26

Example 2:

Consumer surplus

- Suppose demand for a commodity is given by
q(p) = 0.15¢~ "%

and the price drops from p; = 0.7 to po = 0.3.
- Then the gain in consumer surplus

/ N q(p) dp,

p2
may be computed by executing
from compecon import gnwlege

q = lambda x: 0.15%p*x(-1.25)

p, w = gnwlege(11, 0.3, 0.7)

change = w.dot(q(p))

- The computed answer, 01548, is correct to four significant
digits.

27

Figure 10: Change in Consumer Surplus

28

Computing Expectations

- In economics, we must often compute the expectation of a
function f of a random variable X with known probability
density function w:

Ef(X) = / f(@)w(z) de.

- For example, in the “Risk Problem”:

- X is the agent’s random income,

- fis the agent’s utility of income function, and
- w is the probability density function of income.

29

- Two numerical techniques are widely used to compute
expectations in economics.

- Gaussian quadrature is especially powerful when the
dimension of the random variable is low and the
integrand f is smooth.

- Monte Carlo simulation, discussed separately in the next
section, is easy to apply, and is especially useful when the
random variable is high dimensional.

30

Gaussian Quadrature

- Gaussian quadrature replaces the continuous random
variable X with a discrete random variable that is easier
to work with.

- Specifically, the n mass points z; and n probabilities w; of
the discrete random variable are chosen so as to replicate
the mean, variance, skewness, kurtosis, and, more
generally, the same first 2n — 1 moments of X.

- This imposes 2n “moment matching” conditions

n
> waf =EX*, k=0,...,2n—1,
=il

which may be solved for the n mass points and n
probabilities using nonlinear equation methods.

31

- Given the discrete approximant for X, one may easily
compute an approximation for the expectation of an
arbitrary function f of X as follows:

Ef(X) = Z w; f ().
=

- By construction, the expectation approximation will be
exact if f is a polynomial of degree 2n — 1 or less.

- This suggests that the expectation approximation should
be accurate if f can be reasonably approximated by a

polynomial of degree 2n — 1 or less; that is, if f is smooth.

32

Example 3:

Gaussian quadrature

- For n = 3, the Gaussian quadrature mass points and
probabilities for a standard normal variable Z are

r1 = —\/g wp = 1/6
g = 0 wyg = 2/3
T3 = V3 wy = 1/6

- The exact value of Eexp(Z), expressed to four significant
digits, is 1.6487.

- The Gaussian quadrature approximation,

~ 1 2 1
Eexp(Z) ~ 5 exp(—V/3) + 3 exp(0) + 8 exp(V/3) = 1.6382,

is accurate to less than 1%, a remarkable fact given that
we used a three-point approximation.

33

CompEcon Utilities

- The CompEcon Toolbox contains utilities for generating
discrete approximants for common probability
distributions.

- All utilities generate mass points x and probabilities w as
output, and require the number of mass points n as input,
but differ with respect to other inputs:

34

- Normal Distribution
X, w = gnwnorm(n,mu,var)
Here, mu is the mean and var is the variance.
- Lognormal Distribution
X, w = gnwlogn(n,mu,var)

Here, mu is the log mean and var is the log variance.

- Beta Distribution
X, w = gnwbeta(n,a,b)
Here, a and b are the shape parameters.
- Gamma Distribution
x,w = gnwgamma(n,a,b)
Here, a is the shape parameter and b is the scale
parameter.

35

Example 4:

A risk problem

- Let us revisit the “risk problem”, in which an agent
possesses utility of income u(y) = —exp(—ay), o > 0, and
faces uncertain income ¢ that is lognormally distributed

with parameters p and o2.

- Would the agent accept a certain income y* = 1 in place
of the uncertain income § if 4 =0, 02 = 0.1, and o = 27

36

- To compute the agent’s expected utility with random
income, execute the script
from compecon import gnwlogn
from numpy import exp

n = 100
mu, var, alpha = 0, 0.1, 2
y, w = gnwlogn(n,mu,var)
Eu = -w.dot(exp(-alphaxy))
- This generates the approximation Eu(g) = —0.148, which
is less than u(y*) = —0.135.

- Yes, the agent would accept the certain income.

37

- The utility gnwnorm also generates discrete

approximations for multivariate normal variates.

- To generate mass points and probabilities for d jointly

distributed normal random variables, execute the script
X, w = gnwnorm(n,mu,var);

where nis a1 x d vector indicating the number of mass

points for each variable, mu is the 1 x d mean vector, and
var is the d x d covariance matrix.

- On output, x is an d x N matrix of mass points and w is an
N vector of probabilities, where N =n(1) - n(2) - ... n(d).

38

Example 5:

A farmer’s problem

- Afarmer’s per-acre revenue is the product of the unit
price p and per-acre yield g, the logs of which are jointly
normally distributed with mean vector and covariance

matrix
1 0.2 —0.1
/_L =] E =
2 —0.1 0.4
- To compute the farmer’s expected revenue using a grid of

150 mass points formed as the Cartesian product of 10
price nodes and 15 yield nodes:
from compecon import gnwnorm
from numpy import exp
mu, sigma = [1, 2], [[0.2,-0.1],[-0.1, 0.4]]
(p,y), w = gnwnorm([10,15], mu, sigma)
expectedrevenue = w.dot(exp(p+y))

39

Monte Carlo Simulation

- Monte Carlo simulation offers an alternative way to
compute expectations that is especially useful when the
random variable is high-dimensional.

- Monte Carlo simulation is motivated by the Strong Law of
Large Numbers.

- The Law states that if 1, z9,... are independent
realizations of a random variable X and f is a continuous
function, then

Ef(X) = lim =3 f(x)
=il

with probability one.

40

- The Monte Carlo simulation scheme is simple.

- To compute an approximation for Ef(X), draw a random
sample z1, 9, . .., z, from the distribution of X and set

EfR)~ = 3 fw).
i=1

- But how do you draw a random sample?

4

Random Number Generators

- Arandom number generator is an algorithm that
generates what appears to be a sequence of independent
realizations of a random variable with a specified
distribution.

- A fundamental problem with so-called random number
generators is that they employ purely deterministic, not
random iteration rules.

- If you repeatedly initiate a generator at the same point, it
will generate the same sequence of “random” numbers
each time.

- The best that can be said of a random number generators
is that a good one will generate realizations that pass
certain statistical tests for randomness.

- For this reason, random number generators are perhaps

, 42
best said to be “pseudo-random” number generators.

- numpy.random provides two intrinsic random number
generators.

- rand(m,n) generates an m x n matrix of numbers that
are independently uniformly distributed on the interval
[0,1].

- randn(m, n) generates an m x n matrix of numbers that
are independently standard normally distributed.

43

Example 6:

Generating random numbers
from a standard normal
distribution

- To generate 100,000 independent realizations of a
standard normally distributed random variable, execute

from numpy.random import randn

X = randn(100_000)
- Based on your knowledge of normal distribution theory,
what would you expect the following commands to
produce:

x.mean()

x.std()

(x < 1.6449).mean()

- You would expect 0, 1, and 0.95.
- The computed values are close, but not exact.

4

Example 7:

Generating random numbers
from a uniform distribution

- To generate 100,000 independent realizations of a uniform
(071) random variable, execute

from numpy.random import rand

X = rand(100_000)

- Based on your knowledge of distribution theory, what
would you expect the following commands to produce:

x.mean()
x.std()
(x < 0.2).mean()

- You would expect 0.5, 1/1/12 = 0.2887, and 0.2.
- The computed values are close, but not exact.

45

- The scipy.stats library provides random number
generators for over 90 distributions, including the Beta,
Binomial, Exponential, Extreme Value, Gamma, Logistic,
Lognormal, Normal, and Poisson distributions.
- To generate an n x m matrix of independent realizations
of a given random variable, the calling protocol is

x = dist.rvs(xparameters,size=[n,m])
where dist is the name of the distribution and
parameters are the parameters of the distribution.

46

Example 8:

Approximating an expected value

- To approximately compute E X! where X is distributed
Beta with shape parameters 1.5 and 3.0, execute the script
X = beta.rvs(1.5, 3.0, size=100_000)
(1 / x).mean()

- To approximately compute Emin(X,Y) where X and Y
are independent, X is Gamma distributed with shape
parameter 1.5 and scale parameter 3.0, and Y is
exponentially distributed with mean 1, execute the script
X = gamma.rvs(1.5,3.0,size=100_000)
y = exponential.rvs(1l,size=100_000)
np.minimum(x,y).mean()

47

Example 9:

Approximating a probability

- To compute an approximate value for Pr(Y < X?2) where
X and Y are independent, X is extreme value distributed
with location parameter 0.5 and scale parameter 1.0, and
Y is geometrically distributed with probability parameter
0.3, execute the script
X = genextreme.rvs(0,0.5,1.0,size=100_000)
y = geom.rvs(0.3,size=100_000)
(y<x**2).mean()
- A more accurate way would be to execute the script
geom.cdf(x*%2,0.3).mean()

48

Example 10:
A random commodity price

- A commodity price is governed by weekly price movements

log(ps+1) = log(pe) + &

where the ¢ are i.i.d. normal with mean x = 0.005 and
standard deviation o = 0.02.
- To simulate three time series of 40 weekly price changes,
starting from a price of 2, execute the script

m, n =3, 40

mu, sigma = 0.005, 0.02

e = norm.rvs(mu,sigma,size=[n,m])

logp = np.zeros([n+1,m])

logp[0] = np.log(2)

for t in range(40):

logp[t+1] = logp[t] + e[t]

plt.plot(np.exp(logp))

49

2.6

10 15 20 25
Week

Figure 11: Time Series Simulation

30

35

40

50

- The scipy.stats library also provides a random
number generator for multivariate normally distributed
random vectors.
- To generate n independent realizations of a
d-dimensional normally distributed random vector, the
calling protocol is

r = multivariate_normal.rvs(mu, var, size=n)
where mu is a d mean vector and var is a d x d positive
definite variance matrix.

51

Example 11

A farmer facing random prices
and yields

- A farmer’s per-acre revenue is the product of the unit
price p and per-acre yield g, the logs of which are jointly
normally distributed with mean vector and covariance

matrix

1 0.2 —-0.1

:u‘ = Z =

2 —0.1 0.4
- To compute the farmer’s expected revenue using 100,000
independent realizations of the joint distribution of price
and yield, execute:

mu, sigma = [1, 2], [[0.2, -0.1],[-0.1, 0.4]]

p, y = multivariate_normal.rvs(mu, sigma, size=100_000).T
expectedrevenue = np.exp(p + y).mean()

52

- Monte Carlo simulation possesses certain advantages.

- Monte Carlo simulation is easy to implement.

- Most software application packages (e.g., Excel) provide
random number generators, but do not provide functions
that compute Gaussian quadrature mass points and
probabilities.

- Multidimensional Gaussian quadrature suffers from the
“curse of dimensionality” — if you use n nodes in each of d
directions, you end up with n% mass points.

- Monte Carlo simulation does not suffer from the curse
and is especially useful when simulating time-series of
autocorrelated random variables, whose dimension
equals the length of the series.

53

- Monte Carlo simulation, however, possesses some
disadvantages.

- Approximations generated by Monte Carlo simulation will
vary from one integration to the next, and are subject to a
sampling error that cannot be bounded with certainty.

- The approximation can be made more accurate, in a
dubious statistical sense, by increasing the size of the
random sample, but this can be expensive.

- Monte Carlo simulation should be avoided when other
methods are practicable, and used only when taking
expectations over high-dimensional random variables.

54

Quasi-Monte Carlo Integration

- Quasi-Monte Carlo methods employ deterministic
sequences of nodes x; with the property that

i T)= [o)

for smooth functions f without regard to whether they
pass tests of randomness.

- Deterministic sequences of nodes chosen to fill space in a
regular manner typically provide more accurate
integration approximations than pseudo-random
sequences.

55

- There are numerous algorithms for generating

equidistributed sequences, including the Neiderreiter and
Weyl sequences.

- The algorithm are explained in detail in the Judd and
Miranda & Fackler textbooks, but are not important for us
here.

- Let us examine examples of equidistributed sequences on
the unit square.

56

X2

Pseudo-Random Sequence

=0 Wage s, Koo S (I NF)

RE ML e T
e K '.%{"_-.o; s *
TS ey Sr Ay B
o, {03 & da-b'.“:: e '.l..‘ o
oo o e fo‘.’e.:. e ® 'qoﬂ“g

. A 0.:01 o g
?.......?:‘: u:&"t o”o‘.‘..% .0‘0“0..52...

O " 55 0y = 2% o‘ﬂ;& .:5.
o SRS SV PRI R e st
0 1

X1

Figure 12: Pseudo-Random Sequence on Unit Square

57

X2

230002,

Weyl Sequence

20 0 s 2,°0,% ¢
TS R B TRTR
2422,
e

0,02,
PRI

X1

Figure 13: Weyl Sequence on Unit Square

58

Neiderreiter Sequence

e R L S ety

— o
X

o

X1

Figure 14: Neiderreiter Sequence on Unit Square

59

- CompEcon utility gnwequi generates equidistributed
nodes and weights as follows
X, w = gnwequi(n,a,b,type)

- The inputs n = the number integration nodes, a = left
integration limit, and b = right integration limit.
- The additional input type refers to the type of
equidistributed sequence:

'N' = Neiderrieter (the default),

'W' = Weyl, and

'R' = uniform pseudo-random.
- The integration limits are d vectors if the integration is
taking place over a d-dimensional hypercube.

60

Example 12:
Quasi-Monte Carlo Integration

To seven significant digits,

1l
A= / / e Tt C082<1‘2) dz; dzo
—1J-1

1 1
= / e "t dzy x / c0s2(a:2) dzo
=il =il

= (e— 1) x (1+ Lsin(2)) ~ 3.4190008

To approximate the integral using a 10,000 node Neiderrieter
scheme, execute the script

from numpy import exp, cos

from compecon import gnwequi

n, a, b = 10_000, [-1, -11, [1, 1]
(x1, x2), w = gnwequi(n,a,b,'N")
A = w.dot(exp(-x1) * cos(x2)*%2)

A = 3.421441412

1 1
A= / / e T1 0082(1'2) dz; dzs ~ 3.4190098
—1J-1

Nodes Random Neiderreiter Weyl
10° -2.8 -2.9 -3.5
104 -25 -3 -3.9
10° -2.7 -4.0 -4
106 -3.2 -5.4 -5.7

Table 2: Log10 Approximation Errors for A, Alternative Equidistributed Sequences.

62

Numerical Differentiation

First-Order Derivatives

- The most natural way to approximate a derivative is to
replace it with a finite difference:

flz+h) - f(x)
5 :

fl(z) =

- In theory, the approximation error disappears as h goes to
0, so if we pick i small enough, the error should be small.

63

- The approximation error can be bounded using Taylor’s
theorem, which states that

f@+h) = f(z)+ f/(x)h + O(h?),

where O(h?) is proportional to the square of h.

- Rearranging,

f(z+h) - f(z)
h

flx) = + O(h).

since O(h?)/h = O(h), so the approximation error is
proportional to |h|.

64

- However, there exist a more accurate finite difference
approximation to the derivative of f at x.

- Consider the two second-order Taylor expansions

fl@+h) = f(@)+ f(@)h+ f'(2) + O(h3)

fl@—h) = f(z) - f'(2)h+ f'(x) 5 + O(h?).

- Subtract the second expression from the first, rearrange,
and divide by 2h to get

f’(l‘) _ f(x"’—h)z_hf(‘r — h) +O(h2).

65

el fla+)~ fa—h)
p _Jla+h)—jlz—
f(@) = o
the centered finite difference approximation to the
derivative of f at z.

- Its error O(h?) is one order more accurate than that of the
one-sided finite difference approximation above.

66

- Since, in theory, finite difference approximation errors
vanish as h approaches 0, one is tempted to make h as
small as possible.

- Unfortunately, if 4 is made too small, rounding error can
make the results meaningless.

- Consider the approximation error in the one- and
two-sided finite difference derivatives of exp(z) at z = 1
as a function of the step size h.

67

Error in Numerical Derivatives

vE e

log1o Approximation Error
I
3

-10

e One-Sided
e Two-Sided

-15
-15 -10 -5
logio(h)

Figure 15: Approximation Error for One-Sided and Centered Finite Difference
Derivatives of exp(z) atz =1

68

- The centered finite difference approximation improves as
h shrinks until it reaches cube root of machine precision
Ve.

- Further reductions in h worsen approximation error
because of rounding error.

- This suggests that we set h ~ /e relative to z for centered
finite difference approximations.

- Similar empirical analysis suggests that we set h = /e
relative to = for one-sided finite difference
approximations.

69

Higher-Order Derivatives

- Finite difference approximations for higher order
derivatives can be found using a similar approach.

- For, example an order O(h?) centered finite difference
approximation to the second derivative is

" x+h)—2f(x x—h
oy » LOFD 2@ T o)

70

- To show the error is O(h?), add the two third-order Taylor
expansions

h? h3
F@+h) = f@) + [@h+ @)% + @)% +O(hY
h? h3
f@=h) = (@) = f@h+ (@)% - @)% +OhY)

to get
f@+h)+ f(z — h) =2f(z) + f"(z)h* + O(h?),

rearrange, and divide by h?.

71

CompEcon Utilities

- The CompEcon Toolbox utilities jacobian and hessian
compute Jacobians and Hessians numerically.

+ These were introduced earlier in the course.

- For convenience, we repeat examples of how to use them
here.

72

- CompEcon utility jacobian computes the m x n finite
difference Jacobian of an arbitrary function f : R™ — R™.

- The calling protocol is

J = jacobian(f, #function of form fval=f(x)
x) #evaluation point

- Output: J = Jacobian of f at x

73

Example 13:
Computing a Jacobian

- The exact Jacobian of

f(:Ela x2) =

at (0,1) is

exp(z1) — o2
T+ x%
(1 —z1)log(x2)

—_

=1l

fl(@,22) = (1 2

0

74

To compute the Jacobian numerically, execute the script

def f(x):
x1l, X2 = X
y = [np.exp(x1)-x2,
X1 + X2**2,
(1-x1)*np.log(x2)]
return np.array(y)

np.set_printoptions(precision=15)
print(jacobian(f,np.array([0,1])))

This should return

[[1.000000000014386 -1. 1
[0.999999999996052 1.999999999990833]
[o.

1.0000000000122231]

75

- CompEcon utility hessian computes the n x n finite
difference Hessian of an arbitrary function f : R — R.

- The calling protocol is

H = hessian(f, #function of form fval=f(x)
x) #evaluation point

- Output: H = Hessian of f at x

76

	Introduction
	Area Under a Curve
	Computing Expectations
	Monte Carlo Simulation
	Quasi-Monte Carlo Integration
	Numerical Differentiation

