
Lecture 6
Numerical Integration and Differentiation

Randall Romero Aguilar, PhD
This draft: October 10, 2018

Universidad de Costa Rica
SP6534 - Economía Computacional

Table of contents

1. Introduction

2. Area Under a Curve

3. Computing Expectations

4. Monte Carlo Simulation

5. Quasi-Monte Carlo Integration

6. Numerical Differentiation

Introduction

A Statistics Problem

What is the probability that a standard normal random
variable Z̃ will realize a value less than or equal to z?

z

Pr(Z z)

Figure 1: Standard Normal Density 1

• The probability is the area under the standard normal
probability density function to the left of z:

Pr(Z̃ ≤ z) =
1√
2π

∫ z

−∞
exp

(
− t2

2

)
dt

• Evaluate this integral for z = 1.
• Are you having difficulties?
• No surprise, since the integral lacks closed-form.
• Check the table in the back of your statistics book.
• It says the probability is 0.841.
• How did the author get this value?

2

A Risk Problem

• An agent’s utility of income y exhibits constant absolute
risk aversion α > 0:

u(y) = − exp(−αy).

• The agent faces uncertain income ỹ that is lognormally
distributed with log mean µ and log variance σ2.

• Would this agent accept a certain income y∗ in place of
his uncertain income ỹ?

• According to expected utility theory, yes, provided

u(y∗) > Eu(ỹ).

3

• To answer the question definitively, we must evaluate the
agent’s expected utility with the uncertain income:

Eu(ỹ) = − 1

σ
√
2π

∫ ∞

0

1

y
exp

(
−(ln(y)− µ)2

2σ2
− αy

)
dy.

• Evaluate this expression when µ = 0, σ2 = 0.1, and α = 2.
• Are you having difficulties?
• No surprise, since the integral lacks closed-form.

4

Numerical Quadrature

• In economics, we encounter two types of integration
problems:

• Evaluate the area under a curve, as in the “statistics”
example.

• Evaluate the expectation of a function of a random
variable, as in the “risk” example.

• In many applications, the definite integral lacks an
equivalent closed-form expression or is otherwise
analytically intractable.

• However, such integrals typically may be easily and
accurately evaluated numerically using quadrature
methods.

5

• We discuss three classes of quadrature methods:
• Newton-Cotes rules
• Gaussian quadrature
• Monte Carlo simulation

• All these methods have one thing in common: the definite
integral is approximated using a weighted sum of function
values at prescribed nodes, a simple task on a computer.

• Methods differ only in how the weights and nodes are
chosen.

6

Area Under a Curve

Consider finding the area under a continuous real-valued
function f over a bounded interval [a, b]:

A =

∫ b

a
f(x) dx

3 quadrature methods are commonly used to compute areas:

• Trapezoid rule
• Simpson’s rule
• Gauss-Legendre quadrature

a b
0

f(x)

A =
b

a
f(x)dx

Figure 2: Area Under a Curve

7

Trapezoid Rule

• The trapezoid rule approximates the area under a
function f with the area under a piecewise linear
approximation to f , f̃ .

• Partition the interval [a, b] into n subintervals of equal
length h = (b− a)/n defined by the nodes xi = a+ ih,
i = 0, 1, . . . , n.

• Compute the function values yi = f(xi) at the nodes.
• Construct f̃ by connecting successive points (xi, yi) on the
graph of f with straight lines.

• The area under f̃ is a series of trapezoids, giving the
trapezoid rule its name.

8

x0=a x1 x2=b
0

f(x)
f3(x)

Figure 3: Trapezoid Rule, n = 2

9

x0=a x1 x2 x3 x4=b
0

f(x)
f5(x)

Figure 4: Trapezoid Rule, n = 4

10

x0=a x1 x2 x3 x4 x5 x6 x7 x8=b
0

f(x)
f9(x)

Figure 5: Trapezoid Rule, n = 8

11

• The area of the ith trapezoid is:∫ xi

xi−1

f̃(x) dx =
h

2
[f(xi−1) + f(xi)].

• Summing the areas of all n trapezoids yields the trapezoid
rule: ∫ b

a
f(x) dx ≈

n∑
i=0

wi f(xi)

where

wi =

{
h/2 i = 0, i = n

h otherwise

12

• The trapezoid rule is simple and robust.
• If f is smooth, the trapezoid rule affords an
approximation error proportional to h2.

• Doubling the number of nodes will reduce the
approximation error by a factor of four.

13

Simpson’s Rule

• Simpson’s rule approximates the area under a function f

with the area under a piecewise quadratic approximation
to f , f̃ .

• Partition the interval [a, b] into n subintervals of equal
length h = (b− a)/n defined by the nodes xi = a+ ih,
i = 0, 1, . . . , n, n even.

• Compute the function values yi = f(xi) at the nodes.
• Form a piecewise quadratic approximation f̃ for f by
interpolating successive triplets of graph points
(xi−2, yi−2), (xi−1, yi−1), and (xi, yi), i = 2, 4, . . . , n, with
quadratic functions.

14

x0=a x1 x2=b
0

f(x)
f3(x)

Figure 6: Simpson’s Rule, n = 2

15

x0=a x1 x2 x3 x4=b
0

f(x)
f5(x)

Figure 7: Simpson’s Rule, n = 4

16

x0=a x1 x2 x3 x4 x5 x6 x7 x8=b
0

f(x)
f9(x)

Figure 8: Simpson’s Rule, n = 8

17

• The area under f̃ over subintervals i− 1 and i, for
i = 2, 4, . . . , n, is:∫ xi

xi−2

f̃(x) dx =
h

3
(f(xi−2) + 4f(xi−1) + f(xi)) .

• Summing across successive pairs of subintervals yields
Simpson’s rule: ∫ b

a
f(x) dx ≈

n∑
i=0

wif(xi)

where

wi =

h/3 i = 0, i = n

4h/3 0 < i < n, i even
2h/3 0 < i < n, i odd

18

• If f is smooth, Simpson’s rule affords an approximation
error proportional to h4, the square of the trapezoid rule
error.

• Doubling the number of nodes will reduce the
approximation error by a factor of sixteen.

• Simpson’s rule is preferred to the trapezoid rule because
it is almost as simple, but far more accurate.

19

Newton-Cotes Rules

• The trapezoid rule and Simpson’s rule are examples of
Newton-Cotes rules, which replace the integrand with a
piecewise polynomial of low degree.

• Newton-Cotes rules based on piecewise polynomials of
third and higher degree can be defined, but are not
practical.

20

Gauss-Legendre Quadrature

• Gauss-Legendre quadrature employs different logic to
compute the area under a curve f over a bounded
interval [a, b].

• Specifically, the n quadrature nodes xi and n quadrature
weights wi are chosen to exactly integrate polynomials of
degree 2n− 1 or less.

• This requirement imposes the 2n conditions∫ b

a
xk dx =

n∑
i=1

wix
k
i , k = 0, . . . , 2n− 1,

which may be solved for the n nodes and n weights using
nonlinear equation methods.

21

• Unlike Newton-Cotes rules, Gauss-Legendre nodes are not
uniformly spaced and do not include the integration
limits.

• For example, the order-4 Gauss-Legendre nodes over the
interval [0, 1] are 0.069, 0.330, 0.670, and 0.931 and the
corresponding weights are 0.174, 0.326, 0.326, and 0.174.

22

Gauss-Legendre quadrature outperforms Newton-Cotes rules
if the integrand f is smooth, but otherwise may perform no
better or worse.
For example, consider integrating e−x and

√
|x| on [−1, 1].

1 0 1
0

e x

1 0 1
0

|x|

Figure 9: A smooth and a non-smooth function
23

Integral Nodes
n

Trapezoid
rule

Simpson’s
rule

Gauss-
Legendre∫ 1

−1 e
−xdx 5 -1.7 -3.5 -9.5

11 -2.5 -5.1 -14.3
21 -3.1 -6.3 -14.7
31 -3.4 -7.0 -inf∫ 1

−1

√
|x|dx 5 -1.0 -1.4 -0.9

11 -1.6 -1.3 -1.4
21 -2.0 -2.4 -1.8
31 -2.3 -2.1 -2.0

Table 1: Log10 Definite Integral Relative Approximation Errors

24

CompEcon Utilities

• CompEcon utilities qnwtrap, qnwsimp and qnwlege
generate the trapezoid rule, Simpson’s rule, and
Gauss-Legendre nodes and weights as follows:

x, w = qnwtrap(n,a,b)
x, w = qnwsimp(n,a,b)
x, w = qnwlege(n,a,b)

• Input: n the number of nodes, a the left integration limit,
and b the right integration limit.

• Output: x and w, the n-vectors of quadrature nodes and
weights, respectively.

25

Example 1:

Computing a probability

To compute the probability that a standard normal random
variable is less than 1, execute the script

from numpy import exp, sqrt, pi
from compecon import qnwsimp

f = lambda x: exp(-x**2/2) / sqrt(2*pi)
x, w = qnwsimp(11, 0, 1)
prob = 0.5 + w.dot(f(x))

The computed answer, 0.8413, is correct to four significant
digits.

This is how the table in your statistics book was computed.

26

Example 2:

Consumer surplus

• Suppose demand for a commodity is given by

q(p) = 0.15q−1.25

and the price drops from p1 = 0.7 to p2 = 0.3.
• Then the gain in consumer surplus∫ p1

p2

q(p) dp,

may be computed by executing
from compecon import qnwlege

q = lambda x: 0.15*p**(-1.25)
p, w = qnwlege(11, 0.3, 0.7)
change = w.dot(q(p))

• The computed answer, 0.1548, is correct to four significant
digits.

27

0 q1 q2 q

p1

p2

p

p(q)

Figure 10: Change in Consumer Surplus
28

Computing Expectations

• In economics, we must often compute the expectation of a
function f of a random variable X̃ with known probability
density function w:

Ef(X̃) =

∫
f(x)w(x) dx.

• For example, in the “Risk Problem”:
• X̃ is the agent’s random income,
• f is the agent’s utility of income function, and
• w is the probability density function of income.

29

• Two numerical techniques are widely used to compute
expectations in economics.

• Gaussian quadrature is especially powerful when the
dimension of the random variable is low and the
integrand f is smooth.

• Monte Carlo simulation, discussed separately in the next
section, is easy to apply, and is especially useful when the
random variable is high dimensional.

30

Gaussian Quadrature

• Gaussian quadrature replaces the continuous random
variable X̃ with a discrete random variable that is easier
to work with.

• Specifically, the n mass points xi and n probabilities wi of
the discrete random variable are chosen so as to replicate
the mean, variance, skewness, kurtosis, and, more
generally, the same first 2n− 1 moments of X̃ .

• This imposes 2n “moment matching” conditions
n∑

i=1

wix
k
i = EX̃k, k = 0, . . . , 2n− 1,

which may be solved for the n mass points and n

probabilities using nonlinear equation methods.

31

• Given the discrete approximant for X̃ , one may easily
compute an approximation for the expectation of an
arbitrary function f of X̃ as follows:

Ef(X̃) ≈
n∑

i=1

wif(xi).

• By construction, the expectation approximation will be
exact if f is a polynomial of degree 2n− 1 or less.

• This suggests that the expectation approximation should
be accurate if f can be reasonably approximated by a
polynomial of degree 2n− 1 or less; that is, if f is smooth.

32

Example 3:

Gaussian quadrature

• For n = 3, the Gaussian quadrature mass points and
probabilities for a standard normal variable Z̃ are

x1 = −
√
3 w1 = 1/6

x2 = 0 w2 = 2/3

x3 =
√
3 w3 = 1/6

• The exact value of E exp(Z̃), expressed to four significant
digits, is 1.6487.

• The Gaussian quadrature approximation,

E exp(Z̃) ≈ 1

6
exp(−

√
3) +

2

3
exp(0) +

1

6
exp(

√
3) = 1.6382,

is accurate to less than 1%, a remarkable fact given that
we used a three-point approximation.

33

CompEcon Utilities

• The CompEcon Toolbox contains utilities for generating
discrete approximants for common probability
distributions.

• All utilities generate mass points x and probabilities w as
output, and require the number of mass points n as input,
but differ with respect to other inputs:

34

• Normal Distribution
x, w = qnwnorm(n,mu,var)

Here, mu is the mean and var is the variance.
• Lognormal Distribution

x, w = qnwlogn(n,mu,var)
Here, mu is the log mean and var is the log variance.

• Beta Distribution
x, w = qnwbeta(n,a,b)

Here, a and b are the shape parameters.
• Gamma Distribution

x,w = qnwgamma(n,a,b)
Here, a is the shape parameter and b is the scale
parameter.

35

Example 4:

A risk problem

• Let us revisit the “risk problem”, in which an agent
possesses utility of income u(y) = − exp(−αy), α > 0, and
faces uncertain income ỹ that is lognormally distributed
with parameters µ and σ2.

• Would the agent accept a certain income y∗ = 1 in place
of the uncertain income ỹ if µ = 0, σ2 = 0.1, and α = 2?

36

• To compute the agent’s expected utility with random
income, execute the script

from compecon import qnwlogn
from numpy import exp

n = 100
mu, var, alpha = 0, 0.1, 2
y, w = qnwlogn(n,mu,var)
Eu = -w.dot(exp(-alpha*y))

• This generates the approximation Eu(ỹ) = −0.148, which
is less than u(y∗) = −0.135.

• Yes, the agent would accept the certain income.

37

• The utility qnwnorm also generates discrete
approximations for multivariate normal variates.

• To generate mass points and probabilities for d jointly
distributed normal random variables, execute the script

x, w = qnwnorm(n,mu,var);
where n is a 1× d vector indicating the number of mass
points for each variable, mu is the 1× d mean vector, and
var is the d× d covariance matrix.

• On output, x is an d×N matrix of mass points and w is an
N vector of probabilities, where N = n(1) · n(2) · . . . · n(d).

38

Example 5:

A farmer’s problem

• A farmer’s per-acre revenue is the product of the unit
price p̃ and per-acre yield ỹ, the logs of which are jointly
normally distributed with mean vector and covariance
matrix

µ =

[
1

2

]
Σ =

[
0.2 −0.1

−0.1 0.4

]
• To compute the farmer’s expected revenue using a grid of
150 mass points formed as the Cartesian product of 10
price nodes and 15 yield nodes:

from compecon import qnwnorm
from numpy import exp
mu, sigma = [1, 2], [[0.2,-0.1],[-0.1, 0.4]]
(p,y), w = qnwnorm([10,15], mu, sigma)
expectedrevenue = w.dot(exp(p+y))

39

Monte Carlo Simulation

• Monte Carlo simulation offers an alternative way to
compute expectations that is especially useful when the
random variable is high-dimensional.

• Monte Carlo simulation is motivated by the Strong Law of
Large Numbers.

• The Law states that if x1, x2, . . . are independent
realizations of a random variable X̃ and f is a continuous
function, then

Ef(X̃) = lim
n→∞

1

n

n∑
i=1

f(xi)

with probability one.

40

• The Monte Carlo simulation scheme is simple.
• To compute an approximation for Ef(X̃), draw a random
sample x1, x2, . . . , xn from the distribution of X̃ and set

Ef(X̃) ≈ 1

n

n∑
i=1

f(xi).

• But how do you draw a random sample?

41

Random Number Generators

• A random number generator is an algorithm that
generates what appears to be a sequence of independent
realizations of a random variable with a specified
distribution.

• A fundamental problem with so-called random number
generators is that they employ purely deterministic, not
random iteration rules.

• If you repeatedly initiate a generator at the same point, it
will generate the same sequence of “random” numbers
each time.

• The best that can be said of a random number generators
is that a good one will generate realizations that pass
certain statistical tests for randomness.

• For this reason, random number generators are perhaps
best said to be “pseudo-random” number generators.

42

• numpy.random provides two intrinsic random number
generators.

• rand(m,n) generates an m× n matrix of numbers that
are independently uniformly distributed on the interval
[0, 1].

• randn(m,n) generates an m× n matrix of numbers that
are independently standard normally distributed.

43

Example 6:

Generating random numbers
from a standard normal
distribution

• To generate 100,000 independent realizations of a
standard normally distributed random variable, execute

from numpy.random import randn
x = randn(100_000)

• Based on your knowledge of normal distribution theory,
what would you expect the following commands to
produce:

x.mean()
x.std()
(x < 1.6449).mean()

• You would expect 0, 1, and 0.95.
• The computed values are close, but not exact.

44

Example 7:

Generating random numbers
from a uniform distribution

• To generate 100,000 independent realizations of a uniform
(0,1) random variable, execute

from numpy.random import rand
x = rand(100_000)

• Based on your knowledge of distribution theory, what
would you expect the following commands to produce:

x.mean()
x.std()
(x < 0.2).mean()

• You would expect 0.5,
√

1/12 = 0.2887, and 0.2.
• The computed values are close, but not exact.

45

• The scipy.stats library provides random number
generators for over 90 distributions, including the Beta,
Binomial, Exponential, Extreme Value, Gamma, Logistic,
Lognormal, Normal, and Poisson distributions.

• To generate an n×m matrix of independent realizations
of a given random variable, the calling protocol is

x = dist.rvs(*parameters,size=[n,m])
where dist is the name of the distribution and
parameters are the parameters of the distribution.

46

Example 8:

Approximating an expected value

• To approximately compute E X̃−1 where X̃ is distributed
Beta with shape parameters 1.5 and 3.0, execute the script

x = beta.rvs(1.5, 3.0, size=100_000)
(1 / x).mean()

• To approximately compute Emin(X̃, Ỹ) where X̃ and Ỹ

are independent, X̃ is Gamma distributed with shape
parameter 1.5 and scale parameter 3.0, and Ỹ is
exponentially distributed with mean 1, execute the script

x = gamma.rvs(1.5,3.0,size=100_000)
y = exponential.rvs(1,size=100_000)
np.minimum(x,y).mean()

47

Example 9:

Approximating a probability

• To compute an approximate value for Pr(Ỹ < X̃2) where
X̃ and Ỹ are independent, X̃ is extreme value distributed
with location parameter 0.5 and scale parameter 1.0, and
Ỹ is geometrically distributed with probability parameter
0.3, execute the script

x = genextreme.rvs(0,0.5,1.0,size=100_000)
y = geom.rvs(0.3,size=100_000)
(y<x**2).mean()

• A more accurate way would be to execute the script
geom.cdf(x**2,0.3).mean()

48

Example 10:

A random commodity price

• A commodity price is governed by weekly price movements

log(pt+1) = log(pt) + ϵ̃t

where the ϵ̃t are i.i.d. normal with mean µ = 0.005 and
standard deviation σ = 0.02.

• To simulate three time series of 40 weekly price changes,
starting from a price of 2, execute the script

m, n = 3, 40
mu, sigma = 0.005, 0.02
e = norm.rvs(mu,sigma,size=[n,m])
logp = np.zeros([n+1,m])
logp[0] = np.log(2)
for t in range(40):

logp[t+1] = logp[t] + e[t]

plt.plot(np.exp(logp))

49

0 5 10 15 20 25 30 35 40
Week

2.0

2.1

2.2

2.3

2.4

2.5

2.6
Pr

ic
e

Figure 11: Time Series Simulation

50

• The scipy.stats library also provides a random
number generator for multivariate normally distributed
random vectors.

• To generate n independent realizations of a
d-dimensional normally distributed random vector, the
calling protocol is

r = multivariate_normal.rvs(mu, var, size=n)
where mu is a d mean vector and var is a d× d positive
definite variance matrix.

51

Example 11:

A farmer facing random prices
and yields

• A farmer’s per-acre revenue is the product of the unit
price p̃ and per-acre yield ỹ, the logs of which are jointly
normally distributed with mean vector and covariance
matrix

µ =

[
1

2

]
Σ =

[
0.2 −0.1

−0.1 0.4

]
• To compute the farmer’s expected revenue using 100,000
independent realizations of the joint distribution of price
and yield, execute:

mu, sigma = [1, 2], [[0.2, -0.1],[-0.1, 0.4]]
p, y = multivariate_normal.rvs(mu, sigma, size=100_000).T
expectedrevenue = np.exp(p + y).mean()

52

Pros and Cons

• Monte Carlo simulation possesses certain advantages.
• Monte Carlo simulation is easy to implement.
• Most software application packages (e.g., Excel) provide
random number generators, but do not provide functions
that compute Gaussian quadrature mass points and
probabilities.

• Multidimensional Gaussian quadrature suffers from the
“curse of dimensionality” – if you use n nodes in each of d
directions, you end up with nd mass points.

• Monte Carlo simulation does not suffer from the curse
and is especially useful when simulating time-series of
autocorrelated random variables, whose dimension
equals the length of the series.

53

• Monte Carlo simulation, however, possesses some
disadvantages.

• Approximations generated by Monte Carlo simulation will
vary from one integration to the next, and are subject to a
sampling error that cannot be bounded with certainty.

• The approximation can be made more accurate, in a
dubious statistical sense, by increasing the size of the
random sample, but this can be expensive.

• Monte Carlo simulation should be avoided when other
methods are practicable, and used only when taking
expectations over high-dimensional random variables.

54

Quasi-Monte Carlo Integration

• Quasi-Monte Carlo methods employ deterministic
sequences of nodes xi with the property that

lim
n→∞

b− a

n

∞∑
i=1

f(xi) =

∫ b

a
f(x) dx,

for smooth functions f without regard to whether they
pass tests of randomness.

• Deterministic sequences of nodes chosen to fill space in a
regular manner typically provide more accurate
integration approximations than pseudo-random
sequences.

55

• There are numerous algorithms for generating
equidistributed sequences, including the Neiderreiter and
Weyl sequences.

• The algorithm are explained in detail in the Judd and
Miranda & Fackler textbooks, but are not important for us
here.

• Let us examine examples of equidistributed sequences on
the unit square.

56

0 1
x1

0

1

x 2

Pseudo-Random Sequence

Figure 12: Pseudo-Random Sequence on Unit Square

57

0 1
x1

0

1

x 2

Weyl Sequence

Figure 13: Weyl Sequence on Unit Square

58

0 1
x1

0

1

x 2

Neiderreiter Sequence

Figure 14: Neiderreiter Sequence on Unit Square

59

• CompEcon utility qnwequi generates equidistributed
nodes and weights as follows

x, w = qnwequi(n,a,b,type)
• The inputs n = the number integration nodes, a = left
integration limit, and b = right integration limit.

• The additional input type refers to the type of
equidistributed sequence:

'N' = Neiderrieter (the default),
'W' = Weyl, and
'R' = uniform pseudo-random.

• The integration limits are d vectors if the integration is
taking place over a d-dimensional hypercube.

60

Example 12:

Quasi-Monte Carlo Integration

To seven significant digits,

A =

∫ 1

−1

∫ 1

−1
e−x1 cos2(x2) dx1 dx2

=

∫ 1

−1
e−x1 dx1 ×

∫ 1

−1
cos2(x2) dx2

=
(
e− 1

e

)
×

(
1 + 1

2 sin(2)
)

≈ 3.4190098

To approximate the integral using a 10,000 node Neiderrieter
scheme, execute the script

from numpy import exp, cos
from compecon import qnwequi
n, a, b = 10_000, [-1, -1], [1, 1]
(x1, x2), w = qnwequi(n,a,b,'N')
A = w.dot(exp(-x1) * cos(x2)**2)

A = 3.421441412

61

A =

∫ 1

−1

∫ 1

−1
e−x1 cos2(x2) dx1 dx2 ≈ 3.4190098

Nodes Random Neiderreiter Weyl

103 -2.8 -2.9 -3.5
104 -2.5 -3.1 -3.9
105 -2.7 -4.0 -4.4
106 -3.2 -5.4 -5.7

Table 2: Log10 Approximation Errors for A, Alternative Equidistributed Sequences.

62

Numerical Differentiation

First-Order Derivatives

• The most natural way to approximate a derivative is to
replace it with a finite difference:

f ′(x) ≈ f(x+ h)− f(x)

h
.

• In theory, the approximation error disappears as h goes to
0, so if we pick h small enough, the error should be small.

63

• The approximation error can be bounded using Taylor’s
theorem, which states that

f(x+ h) = f(x) + f ′(x)h+O(h2),

where O(h2) is proportional to the square of h.
• Rearranging,

f ′(x) =
f(x+ h)− f(x)

h
+O(h).

since O(h2)/h = O(h), so the approximation error is
proportional to |h|.

64

• However, there exist a more accurate finite difference
approximation to the derivative of f at x.

• Consider the two second-order Taylor expansions

f(x+ h) = f(x) + f ′(x)h+ f ′′(x)h
2

2 +O(h3)

f(x− h) = f(x)− f ′(x)h+ f ′′(x)h
2

2 +O(h3).

• Subtract the second expression from the first, rearrange,
and divide by 2h to get

f ′(x) =
f(x+ h)− f(x− h)

2h
+O(h2).

65

• We call
f ′(x) ≈ f(x+ h)− f(x− h)

2h

the centered finite difference approximation to the
derivative of f at x.

• Its error O(h2) is one order more accurate than that of the
one-sided finite difference approximation above.

66

• Since, in theory, finite difference approximation errors
vanish as h approaches 0, one is tempted to make h as
small as possible.

• Unfortunately, if h is made too small, rounding error can
make the results meaningless.

• Consider the approximation error in the one- and
two-sided finite difference derivatives of exp(x) at x = 1

as a function of the step size h.

67

15 10 5 0
log10(h)

15

10

5

0

5

lo
g 1

0
Ap

pr
ox

im
at

io
n

Er
ro

r
3

Error in Numerical Derivatives

One-Sided
Two-Sided

Figure 15: Approximation Error for One-Sided and Centered Finite Difference
Derivatives of exp(x) at x = 1

68

• The centered finite difference approximation improves as
h shrinks until it reaches cube root of machine precision
3
√
ϵ.

• Further reductions in h worsen approximation error
because of rounding error.

• This suggests that we set h ≈ 3
√
ϵ relative to x for centered

finite difference approximations.
• Similar empirical analysis suggests that we set h ≈

√
ϵ

relative to x for one-sided finite difference
approximations.

69

Higher-Order Derivatives

• Finite difference approximations for higher order
derivatives can be found using a similar approach.

• For, example an order O(h2) centered finite difference
approximation to the second derivative is

f ′′(x) ≈ f(x+ h)− 2f(x) + f(x− h)

h2
.

70

• To show the error is O(h2), add the two third-order Taylor
expansions

f(x+ h) = f(x) + f ′(x)h+ f ′′(x)
h2

2
+ f ′′′(x)

h3

6
+O(h4)

f(x− h) = f(x)− f ′(x)h+ f ′′(x)
h2

2
− f ′′′(x)

h3

6
+O(h4),

to get

f(x+ h) + f(x− h) = 2f(x) + f ′′(x)h2 +O(h4),

rearrange, and divide by h2.

71

CompEcon Utilities

• The CompEcon Toolbox utilities jacobian and hessian
compute Jacobians and Hessians numerically.

• These were introduced earlier in the course.
• For convenience, we repeat examples of how to use them
here.

72

• CompEcon utility jacobian computes the m× n finite
difference Jacobian of an arbitrary function f : ℜn 7→ ℜm.

• The calling protocol is
J = jacobian(f, #function of form fval=f(x)

x) #evaluation point
• Output: J = Jacobian of f at x

73

Example 13:

Computing a Jacobian

• The exact Jacobian of

f(x1, x2) =

 exp(x1)− x2

x1 + x22
(1− x1) log(x2)

at (0, 1) is

f ′(x1, x2) =

1 −1

1 2

0 1

74

To compute the Jacobian numerically, execute the script

def f(x):
x1, x2 = x
y = [np.exp(x1)-x2,

x1 + x2**2,
(1-x1)*np.log(x2)]

return np.array(y)

np.set_printoptions(precision=15)
print(jacobian(f,np.array([0,1])))

This should return

[[1.000000000014386 -1.]
[0.999999999996052 1.999999999990833]
[0. 1.000000000012223]]

75

• CompEcon utility hessian computes the n× n finite
difference Hessian of an arbitrary function f : ℜn 7→ ℜ.

• The calling protocol is
H = hessian(f, #function of form fval=f(x)

x) #evaluation point
• Output: H = Hessian of f at x

76

	Introduction
	Area Under a Curve
	Computing Expectations
	Monte Carlo Simulation
	Quasi-Monte Carlo Integration
	Numerical Differentiation

