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In this short note I provide proofs of the Central Limit Theorem (CLT). In plain words, the CLT states that

the sample mean of a sufficiently large sample of independent random variables (from any distribution with

finite mean and variance) will be approximately normally distributed.

In the first section I define the characteristic function (c.f.) of a random variable and present some of its

properties. In the second section, I prove the CLT for the exponential (a continuous) and the Poisson (a discrete)

distributions. The objective here is to emphasize the beauty of the CLT: it applies to any distribution with finite

mean and variance. After illustrating the proof of the CLT for these two distributions, I show how the same

procedure can be used to prove the general result.

1 The characteristic function

Definition Let 𝑋 be a random variable. Its characteristic function 𝜙𝑋(𝑡) is a function of 𝑡 given by

𝜙𝑋(𝑡) = 𝔼 𝑒𝑖𝑡𝑋 (1)

where 𝑖 = √−1 is the imaginary unit.

The normal distribution appears in the CLT, so let’s derive its c.f.

Example Let 𝑋 be a normal random variable with mean 𝜇 and variance 𝜎2. A quick and dirty way to find its

characteristic function is:

𝑋 ∼ 𝑁 􏿴𝜇, 𝜎2􏿷

𝑖𝑡𝑋 ∼ 𝑁 􏿴𝑖𝑡𝜇, 𝑖2𝑡2𝜎2􏿷

𝑒𝑖𝑡𝑋 ∼ 𝑙𝑜𝑔𝑁 􏿴𝑖𝑡𝜇, −𝑡2𝜎2􏿷 (definition of lognormal, 𝑖2 = −1)

𝜙𝑋(𝑡) = 𝔼 𝑒𝑖𝑡𝑋 = exp 􏿺𝑖𝑡𝜇 − 0.5𝑡2𝜎2􏿽 (expected value of lognormal)
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More formally
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where the last integral equals one because is the sum of the pdf for a 𝑁(𝜇+ 𝑖𝑡𝜎2, 𝜎2) distribution. In particular,

for the standard normal distribution 𝑍 ∼ 𝑁(0, 1) it follows that 𝜙𝑍(𝑡) = exp 􏿺−0.5𝑡2􏿽 .

Some useful properties of the characteristic function are:

Theorem 1 Two independent random variables𝑋 and𝑌 have the same distribution if and only if they have the same characteristic

function.

Proposition 2 Let 𝑋,𝑌 be two independent random variables and 𝑎, 𝑏 two constants. Then

𝜙𝑋+𝑌(𝑡) = 𝜙𝑋(𝑡)𝜙𝑌(𝑡) (2)

𝜙𝑎(𝑡) = 𝑒𝑖𝑎𝑡 (3)

𝜙𝑎𝑋(𝑡) = 𝜙𝑋(𝑎𝑡) (4)

Proof The last two results simply follow from the definition of c.f. In the case of (3):

𝜙𝑎(𝑡) = 𝔼 𝑒𝑖𝑎𝑡 = 𝑒𝑖𝑎𝑡 (since 𝑎 is a constat)

and in the case of (4):

𝜙𝑎𝑋(𝑡) = 𝔼 𝑒𝑖(𝑎𝑋)𝑡 = 𝔼 𝑒𝑖𝑋(𝑎𝑡) = 𝜙𝑋(𝑎𝑡)
For (2):

𝜙𝑋+𝑌(𝑡) = 𝔼 𝑒𝑖(𝑋+𝑌)𝑡

= 𝔼 􏿴𝑒𝑖𝑋𝑡𝑒𝑖𝑌𝑡􏿷

= 𝔼 𝑒𝑖𝑋𝑡𝔼𝑒𝑖𝑌𝑡 𝑋,𝑌 are independent

= 𝜙𝑋(𝑡)𝜙𝑌(𝑡)

The following lemma can be proved by using the results (2)-(4)

Lemma 3 Let 𝑋1, 𝑋2, … , 𝑋𝑛 be 𝑛 identical and independent random variables, with common finite moments 𝔼𝑋 = 𝜇 and

𝔼􏿴𝑋 − 𝜇􏿷
2
= 𝜎2 and characteristic function 𝜙𝑋(𝑡). Let 𝑌 be defined by

𝑌 =
1

𝜎√𝑛

𝑛
􏾜
𝑖=1

􏿴𝑋𝑖 − 𝜇􏿷

Then:

𝜙𝑌(𝑡) = 􏿰𝜙𝑋 􏿶
𝑡

𝜎√𝑛
􏿹􏿳

𝑛

exp􏿼
−𝑖𝜇𝑡√𝑛

𝜎 􏿿 (5)
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2 Proving the Central Limit Theorem

The examples below follow the definitions and conditions in lemma 3.

2.1 The exponential distribution

For the exponential random variable with cdf 𝐹(𝑥) = 1 − 𝑒
−𝑥
𝛽 , the expected value and the standard deviation are

given by 𝜇 = 𝜎 = 𝛽, and the c.f. is 𝜙𝑋(𝑡) = 􏿴1 − 𝛽𝑡􏿷
−1
. Using lemma 3

𝜙𝑌(𝑡) = 􏿰1 − 𝛽 􏿶
𝑡

𝜎√𝑛
􏿹􏿳

−𝑛

exp􏿼
−𝑖𝜇𝑡√𝑛

𝜎 􏿿

but since 𝜇 = 𝜎 = 𝛽

= 􏿰1 −
𝑡

√𝑛
􏿳
−𝑛

exp 􏿺−𝑖𝑡√𝑛􏿽

using the transformation 𝑎𝑏 = exp[𝑏 log(𝑎)]

= exp􏿼−𝑛 log 􏿶1 −
𝑡

√𝑛
􏿹􏿿 exp 􏿺−𝑖𝑡√𝑛􏿽

= exp􏿼−𝑛 log 􏿶1 −
𝑡

√𝑛
􏿹 − 𝑖𝑡√𝑛􏿿

Taking the limits on both sides as 𝑛 → ∞ and defining 𝑚 = 𝑡

√𝑛
⇒ 𝑛 = 𝑡2

𝑚2

lim
𝑛→∞

𝜙𝑌(𝑡) = lim
𝑛→∞

exp􏿼−𝑛 log 􏿶1 −
𝑡

√𝑛
􏿹 − 𝑖𝑡√𝑛􏿿

= lim
𝑚→0

exp􏿼−
𝑡2

𝑚2 log (1 − 𝑚) −
𝑖𝑡2

𝑚 􏿿

= exp􏿼−𝑡2 lim
𝑚→0

log (1 − 𝑚) + 𝑖𝑚
𝑚2 􏿿

this limit has the indeterminate form
0
0 , so we can apply L’Hôpital’s Rule:

= exp􏿼−𝑡2 lim
𝑚→0

1
2(1 − 𝑚)􏿿

= exp􏿼−
𝑡2

2 􏿿

which is the characteristic function of the standard normal distribution.
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2.2 The Poisson distribution

For the Poisson random variable with pmf 𝑓(𝑋 = 𝑥) = 𝑒−𝑥𝜆𝑥

𝑥! , the expected value and the variance are given by

𝜇 = 𝜎2 = 𝜆, and the c.f. is 𝜙𝑋(𝑡) = exp 􏿺𝜆 􏿴𝑒𝑖𝑡 − 1􏿷􏿽 = exp 􏿺𝜆𝑒𝑖𝑡 − 𝜆􏿽. Using lemma 3

𝜙𝑌(𝑡) = exp􏿼𝜆 exp 􏿶𝑖
𝑡

𝜎√𝑛
􏿹 − 𝜆􏿿

𝑛

exp􏿼
−𝑖𝜇𝑡√𝑛

𝜎 􏿿

= exp􏿼𝜆𝑛 exp 􏿶𝑖
𝑡

𝜎√𝑛
􏿹 − 𝜆𝑛 −

𝑖𝜇𝑡√𝑛
𝜎 􏿿

but since 𝜇 = 𝜎2 = 𝜆

= exp􏿼𝜆𝑛 exp 􏿶
𝑖𝑡

√𝜆𝑛
􏿹 − 𝜆𝑛 − 𝑖𝑡√𝜆𝑛􏿿

Define 𝑚 = 𝑡

√𝜆𝑛
⇒ 𝜆𝑛 = 𝑡2

𝑚2 , substitute

= exp􏿼
𝑡2 exp(𝑖𝑚) − 𝑡2 − 𝑖𝑚𝑡2

𝑚2 􏿿

Taking the limits on both sides as 𝑛 → ∞

lim
𝑛→∞

𝜙𝑌(𝑡) = lim
𝑚→0

exp􏿼
𝑡2 exp(𝑖𝑚) − 𝑡2 − 𝑖𝑚𝑡2

𝑚2 􏿿 (apply L’Hôpital)

= exp􏿼
𝑖𝑡2

2
lim
𝑚→0

exp(𝑖𝑚) − 1
𝑚 􏿿 (once more)

= exp􏿼
𝑖𝑡2

2
lim
𝑚→0

𝑖 exp(𝑖𝑚)􏿿 = exp􏿼−
𝑡2

2 􏿿

which is the characteristic function of the standard normal distribution.
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2.3 General proof

We need to show that

lim
𝑛→∞

𝜙𝑌(𝑡) = lim
𝑛→∞ 􏿰𝜙𝑋 􏿶

𝑡
𝜎√𝑛

􏿹􏿳
𝑛

exp􏿼
−𝑖𝜇𝑡√𝑛

𝜎 􏿿 = exp 􏿻− 1
2 𝑡

2􏿾 (6)

Let’s start with the change of variable 𝑚 = 𝑡
𝜎√𝑛

⇒ 𝑛 = 𝑡2

𝑚2𝜎2 . To evaluate the limit as 𝑛 → ∞ is equivalent to

evaluating as 𝑚 → 0

lim
𝑛→∞

𝜙𝑌(𝑡) = lim
𝑚→0

𝜙𝑌(𝑡)

= lim
𝑚→0

􏿮𝜙𝑋 (𝑚)􏿱
𝑡2

𝜎2𝑚2 exp􏿼
−𝑖𝜇𝑡2

𝜎2𝑚 􏿿

using the transformation 𝑎𝑏 = exp[𝑏 log(𝑎)]

= lim
𝑚→0

exp􏿼
𝑡2

𝜎2𝑚2 log𝜙𝑋(𝑚)􏿿 exp􏿼
−𝑖𝜇𝑡2

𝜎2𝑚 􏿿

= lim
𝑚→0

exp􏿼
𝑡2

𝜎2𝑚2 log𝜙𝑋(𝑚) −
𝑖𝜇𝑡2

𝜎2𝑚􏿿

= lim
𝑚→0

exp􏿼−
1
2
𝑡2 􏿰

2𝑖𝜇
𝜎2𝑚

−
2

𝜎2𝑚2 log𝜙𝑋(𝑚)􏿳􏿿

= exp􏿼−
1
2
𝑡2 lim

𝑚→0

2𝑖𝜇𝑚 − 2 log𝜙𝑋(𝑚)
𝜎2𝑚2 􏿿

To finish the proof, all we need to do is to show that limit in the last expression is equal to one. Notice that

𝜙𝑋(0) = 1, so the limit has the indeterminate form
0
0 . We can apply L’Hôpital’s Rule:

lim
𝑚→0

2𝑖𝜇𝑚 − 2 log𝜙𝑋(𝑚)
𝜎2𝑚2 = lim

𝑚→0

2𝑖𝜇 − 2𝜙
′
𝑋(𝑚)

𝜙𝑋(𝑚)

2𝜎2𝑚

but 𝜙′
𝑋(0) = 𝑖𝔼𝑋 = 𝑖𝜇, so we apply L’Hôpital’s Rule again

= lim
𝑚→0

− 􏿮𝜙″
𝑋(𝑚)𝜙𝑋(𝑚) − 𝜙′

𝑋(𝑚)𝜙′
𝑋(𝑚)􏿱

𝜎2𝜙𝑋(𝑚)𝜙𝑋(𝑚)

=
− 􏿮𝑖2𝔼𝑋2 − 𝑖2(𝔼𝑋)2􏿱

𝜎2

= −𝑖2
𝔼𝑋2 − (𝔼𝑋)2

𝜎2
= 1
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