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In this short note I provide proofs of the Central Limit Theorem (CLT). In plain words, the CLT states that
the sample mean of a sufficiently large sample of independent random variables (from any distribution with
finite mean and variance) will be approximately normally distributed.

In the first section I define the characteristic function (c.f.) of a random variable and present some of its
properties. In the second section, I prove the CLT for the exponential (a continuous) and the Poisson (a discrete)
distributions. The objective here is to emphasize the beauty of the CLT: it applies to any distribution with finite
mean and variance. After illustrating the proof of the CLT for these two distributions, I show how the same
procedure can be used to prove the general result.

1 The characteristic function

Definition Let X be a random vatiable. Its characteristic function @x (t) is a function of ¢ given by

Px(t) = Ee™X )
where i = V=1 is the imaginary unit.
The normal distribution appears in the CLT, so let’s derive its c.f.

Example Let X be a normal random vatiable with mean p and variance o 2 A quick and dirty way to find its
characteristic function is:

X ~N (y, 02)
itX ~ N (ity, 22?)
e ~ logN (ity,~20%)  (definition of lognormal, 2 = —1)
¢x(t)=E etX = exp {ity - 0.5t202} (expected value of lognormal)



More formally
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where the last integral equals one because is the sum of the pdf for a N(u + ito?, 62) distribution. In particular,
for the standard normal distribution Z ~ N (0, 1) it follows that ¢£(t) = exp {—0.5t2} . |

Some useful properties of the characteristic function are:

Theotem 1 Two independent random variables X andY have the same distribution if and only if they have the same characteristic
Sfunction.

Proposition 2 et X, Y be two independent random variables and a, b two constants. Then

Ox+y(t) = Px(H)py(F) 2
Pa(t) = € 3
Pax () = Px(at) @

Proof The last two results simply follow from the definition of c.f. In the case of (3):
Ga(t) = Ee™ = ¢ (since a is a constat)

and in the case of (4): ‘ )
Gax(t) = E @) = X = ¢y (at)

For (2):
Gxar(f) = El1!
-E (eiXteth)
= EeX EeY! X, Y are independent
= ¢x(OPy(h)
The following lemma can be proved by using the results (2)-(4)

Lemma 3 et X1, Xy, ..., X, be nn identical and independent random variables, with common finite moments E X = 1 and
2
E (X - [J) = 02 and characteristic function px (t). Let Y be defined by

YZOL\/EZ(XZJH)

Then:
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2 Proving the Central Limit Theorem

The examples below follow the definitions and conditions in lemma 3.

2.1 The exponential distribution
=
For the exponential random variable with cdf F(x) = 1—e¢ £ | the expected value and the standard deviation are

-1
given by 4 = 0 = 5, and the c.f. is ¢x(t) = (1 - ﬁt) . Using lemma 3
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Taking the limits on both sides as 7 — 00 and defining m = L =>n= !
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this limit has the indeterminate form 5> S0 we can apply I’Hopital’s Rule:
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which is the characteristic function of the standard normal distribution.



2.2 'The Poisson distribution

For the Poisson random variable with pmf f(X = x) =
p =02 = A, and the c.f. is px(t) = eXp{ ( )} = eXp {Aelt - /\} Using lemma 3
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it
= exp {/\n exp (\/—_) —An—it An}
An
2

t t .
Definem = — = An = — substitute

Vin
t2 exp(im) — t* — imt?
= exp v

Taking the limits on both sides as n — oo

2 exp(im) — 2 — imt?
lim ¢y (t) = lirr}J exp{ p(im) 5 } (apply L’Hopital)
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= exp ?r%gn}ozexp(zm) =exp\~7

which is the characteristic function of the standard normal distribution.
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2.3 General proof

We need to show that

lim ¢y (f) = lim [cpx (G—f/a)] exp {_i” ;ﬁ} = exp{-3] ©

. 4 # o . .
Let’s start with the change of variable m = — = n = R To evaluate the limit as 7 — ©0 is equivalent to

cf

evaluating as 1 — 0
lim ¢y (t) = lim ¢y (t)
n—o0 m—0
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using the transformation a” = exp[blog(a)]
e
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= exp {_1 2 lim 2ipm - 521;? ¢x<m>}

To finish the proof, all we need to do is to show that limit in the last expression is equal to one. Notice that

¢x(0) =1, so the limit has the indeterminate form g We can apply L’Hoépital’s Rule:
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but ¢ (0) = i[E X = iy, so we apply L’Hopital’s Rule again
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