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Introduction

e Markov processes are an indispensable ingredient of DSGE models.

e They preserve the recursive structure that these models inherit from their deterministic rela-
tives.

o In this lecture we review a few results about these processes that we will need repeatedly in
the modeling of business cycles.

1 Stochastic process

Stochastic Process

A stochastic process is a time sequence of random variables {Y;}52

t=—o00"

Two types of processes:
Continuous if realizations are taken from an interval of the real line Y; € [a,b] C R.

Discrete if there is a countable number of realizations Y; € {y1,92,...,Yn}-
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i.i.d. Stochastic Process

o The elements of a stochastic process are identically and independently distributed (iid for short),
if the probability distribution is the same for each member of the process Z; and independent
of the realizations of other members of the process.

e In this case

PYi=y,Yo=y,....Yr =yr| =
P(Yl :yl) X P(YQ :y2) X+ X P(YT :yT)

Unconditional moments
¢ Unconditional cumulative distribution function

Fy, (y) =P[Y; < y]

o Unconditional expectation (mean)
pe=E (Y1) =/ y dFy, (y)

« Unconditional variance

o

Yor = E(Y; — Mt)2 = / (y — Nt)z dFy, (y)

—00

o Autocovariance
Vit = E(Ye — pe) (Yiej — pu—y)

Stationarity
If neither the mean p; nor the autocovariances v;; depend on the date ¢, then the process for Z;
is said to be covariance-stationary or weakly stationary:

E(Y;)=p for all ¢
E(Y:—p) (Yie; —p) =1 for all ¢ and any j

Example 1: Stationary and nonstationary processes

Suppose Y; is a stochastic process such that Y; ~ N (u;,02)




Stationary because p; and o7 are constant.

Nonstationary because pu; is changing over time.

Nonstationary because o7 is changing over time.

White noise

o The basic building block for the processes considered in this lecture is a sequence {e;} whose
elements have mean zero and variance o2,

E(e) =0 (zero mean)
E () =o? (constant variance)
E(eie;) =0 fort#7 (uncorrelated terms)

o If the terms are normally distributed
e ~ N(0,07)

the we have the Gaussian white noise process.



2 The first-order autoregressive process

Definition of a AR(1) process
o A first-order autoregression, denoted AR(1), satisfies the following difference equation:
Yi=c+oYi1+e
where {e;} is a white noise sequence.
o It is stationary if and only if |¢| < 1.

o In what follows, we assume the process is stationary.

MA () representation of a AR(1) process

o If the AR(1) process is stationary, it can be written

c
Yy = g tet ge1 + e+ ezt

Conditional versus unconditional mean

e The conditional mean given the previous observation is

E[Y; [Yi—1] = ¢+ Y

e The unconditional mean is

o Since ¢ = (1 — ¢)u, the AR(1) process can be written as deviations from ‘equilibrium’

Yi—p=¢Yio1 —p) +e

Impulse-response
e Starting with Y;_1, the value of Y, s will be
Yigs —p =0 (Yie1 —p) + 6% + 0" ey + o+ Perpso1 + €rps

o Suppose that starting in ‘equilibrium’ (Y;—; — g = 0) there is a time-t transitory shock (e = v)
but no more shocks thereafter (€;41 = -+ = €;4.5 = 0). Then

S
Yits —pu=9v
e This is known as an impulse-response function.

o Notice that the process will return to equilibrium as long as |¢| < 1.

Conditional versus unconditional variance
e The conditional variance given the previous observation is

VarlY; | Y;_1] = Var[c + ¢Y;_1 + & | Yi_1] = 02

e The unconditional mean is

0.2

Yo = Var[Y}] = 177¢2

 Notice that 9 > Var[Y; | Y;_4]



Autocovariance and autocorrelation

e The autocovariance is given by ‘
v =% G=1,2,...
e The autocovariance is given by .
pj = ¢’ (j=1,2,...

$=0.9

The three processes are build from the same white noise realization. Notice how process
becomes more persistent as ¢ approaches 1.

3 Markov chains

Markov property
A stochastic process {Z;}5°, has the Markov property if for all k > 1 and all ¢,

P(Zi1| Zuy Zir, -, Zook) = PlZus1 | Z))

That is, the the probability distribution of Z;,; only depends upon the realization of Z;.

Example 3: AR(1) process




o The AR(1) process is a Markov process:
Zi=(1=p)Z+pZi1+e
where p € [0,1), and ¢, ~ iidN (0, 0?) is a white noise process.
e Given Z;, next period’s variable Z;;1 is normally distributed with:

mean: E(Z;11|Z) = (1 — p)Z + pZ;

variance: Var(Z;1|Z;) = o?

Markov Chains
Markov chains are discrete valued Markov processes. They are characterized by three objects:

1. The n different realizations of Z;, represented by the column vector z = [z1, 22, ..., 2, .
2. The probability distribution of the initial date t = 0, m9 = [mo1,T02,- - -, Ton)', Where m; =
P[ZQ = Zi]~

3. The transition matriz P = (p;;), where p;; = P[Z;41 = z; | Z; = z;], representing the dynamics
of the process.

Notice that
* pij 2 0and 357 pij = 1.

o mo; >0and Y i mo; = 1.

Example 4: Unemployment

A worker can either be employed or unemployed:
o If unemployed, she will get a job with probability p = 45%
o If employed, she will lose her job with probability ¢ = 5%

The worker is employed at ¢ = 0. Then the Markov chain is:

outcomes {unemployed, employed} or z = {(1)]

initial probability m, = [ﬂ

transition probability P = [1 ;p ) Piq} - {8(5)2 832}
0.45
0.55 C(\/’:) 0.95
0.05




Example 5: Credit ratings

Transition of the credit ratings from one year to the next:

|AAA AA A BBB BB B CCC D NR.

AAA | 90.34 562 039 0.08 0.03 0 0 0 3.5
AA 0.64 88.78 6.72 047 0.06 0.09 0.02 0.01 321
A 0.07 216 8794 497 047 019 0.01 0.04 4.16

BBB 0.03 024 456 8426 419 076 0.15 0.22 5.59
BB 0.03  0.06 04 6.09 76.09 682 096 098 8.58

B 0 009 029 041 511 7462 3.43 5.3 10.76
CCC 0.13 0 026 077 166 893 53.19 2194 13.14
D 0 0 0 0 1 3.1 929 5129 37.32
N.R. 0 0 0 0 0 0.1 855 74.06 17.07

Transition probabilities are expressed in %.

e Higher ratings are more stable: the diagonal coefficients of the matrix go decreasing.

o Starting from the rating AA it is easier to be downgraded (probability 6.72%) than to be upgraded
(probability 0.64%).

Transition over multiple periods

e The transition matrix is also called a stochastic matrix.
o It defines the probabilities of moving from one value of the state to another in one period.

o The probability of moving from one value of the state to another in two periods is determined
by P2 because

]P)[Zt+2 = ZJ|Zt = Zi]
=3 PlZiys = 2| Ze1 = 2n] X P[Zes1 = 21| Z¢ = 2]
h=1

=Y PuPy =P
h=1

The unconditional distribution
The probability distribution of Z; evolvesrheeox(ling to 7y, = m,P. Therefore

! p2
Ty = o P

m, = wh P*

The limit for kK — oo is the time invariant, stationary, or ergodic distribution of the Markov chain.
It is defined by

=P & (I-P)r=0
(k)

The limit exist and is independent of the initial distribution g if p;

i;j > 0 for some integer k& > 1.



Example 6: Unemployment (cont.)

For the worker who can either be employed or unemployed according to Markov matrix

p_[t=p » ]_[055 045
1 ¢ 1-—g¢| " 1005 095

the stationary distribution [3: 1-— x]/ is the solution to:

T R 3 T | R

Then z = =L and the stationary distribution is: {0 9

p+q
of being unemployed is 10%.
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