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Introduction

• Markov processes are an indispensable ingredient of DSGE models.

• They preserve the recursive structure that these models inherit from their deterministic rela-
tives.

• In this lecture we review a few results about these processes that we will need repeatedly in
the modeling of business cycles.

1 Stochastic process
Stochastic Process

A stochastic process is a time sequence of random variables {Yt}∞t=−∞.

Two types of processes:

Continuous if realizations are taken from an interval of the real line Yt ∈ [a, b] ⊆ R.

Discrete if there is a countable number of realizations Yt ∈ {y1, y2, . . . , yn}.
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i.i.d. Stochastic Process

• The elements of a stochastic process are identically and independently distributed (iid for short),
if the probability distribution is the same for each member of the process Zt and independent
of the realizations of other members of the process.

• In this case

P[Y1 = y1, Y2 = y2, . . . , YT = yT ] =

P(Y1 = y1)× P(Y2 = y2)× · · · × P(YT = yT )

Unconditional moments

• Unconditional cumulative distribution function

FYt (y) = P [Yt ≤ y]

• Unconditional expectation (mean)

µt ≡ E (Yt) =

∫ ∞

−∞
y dFYt

(y)

• Unconditional variance

γ0t ≡ E (Yt − µt)
2
=

∫ ∞

−∞
(y − µt)

2 dFYt (y)

• Autocovariance
γjt ≡ E (Yt − µt) (Yt−j − µt−j)

Stationarity
If neither the mean µt nor the autocovariances γjt depend on the date t, then the process for Zt

is said to be covariance-stationary or weakly stationary:

E (Yt) = µ for all t
E (Yt − µ) (Yt−j − µ) = γj for all t and any j

Example 1: Stationary and nonstationary processes

Suppose Yt is a stochastic process such that Yt ∼ N(µt, σ
2
t )
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Stationary because µt and σ2
t are constant.

time

0 1 2 3 4 5 6 7

y

−6
−4

−2
0

2
4

6

Nonstationary because µt is changing over time.
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Nonstationary because σ2
t is changing over time.
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White noise

• The basic building block for the processes considered in this lecture is a sequence {ϵt} whose
elements have mean zero and variance σ2,

E (ϵt) = 0 (zero mean)
E
(
ϵ2t
)
= σ2 (constant variance)

E (ϵtϵτ ) = 0 for t ̸= τ (uncorrelated terms)

• If the terms are normally distributed

ϵt ∼ N(0, σ2)

the we have the Gaussian white noise process.
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2 The first-order autoregressive process
Definition of a AR(1) process

• A first-order autoregression, denoted AR(1), satisfies the following difference equation:

Yt = c+ ϕYt−1 + ϵt

where {ϵt} is a white noise sequence.

• It is stationary if and only if |ϕ| < 1.

• In what follows, we assume the process is stationary.

MA(∞) representation of a AR(1) process

• If the AR(1) process is stationary, it can be written

Yt =
c

1− ϕ
+ ϵt + ϕϵt−1 + ϕ2ϵt−2 + ϕ3ϵt−3 + . . .

Conditional versus unconditional mean

• The conditional mean given the previous observation is

E[Yt |Yt−1] = c+ ϕYt−1

• The unconditional mean is
µ ≡ E[Yt] =

c

1− ϕ

• Since c = (1− ϕ)µ, the AR(1) process can be written as deviations from ‘equilibrium’

Yt − µ = ϕ(Yt−1 − µ) + ϵt

Impulse-response

• Starting with Yt−1, the value of Yt+s will be

Yt+s − µ = ϕs+1(Yt−1 − µ) + ϕsϵt + ϕs−1ϵt+1 + · · ·+ ϕϵt+s−1 + ϵt+s

• Suppose that starting in ‘equilibrium’ (Yt−1−µ = 0) there is a time-t transitory shock (ϵt = ν)
but no more shocks thereafter (ϵt+1 = · · · = ϵt+s = 0). Then

Yt+s − µ = ϕsν

• This is known as an impulse-response function.

• Notice that the process will return to equilibrium as long as |ϕ| < 1.

Conditional versus unconditional variance

• The conditional variance given the previous observation is

Var[Yt |Yt−1] = Var[c+ ϕYt−1 + ϵt |Yt−1] = σ2

• The unconditional mean is
γ0 ≡ Var[Yt] =

σ2

1− ϕ2

• Notice that γ0 > Var[Yt |Yt−1]
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Autocovariance and autocorrelation

• The autocovariance is given by
γj = ϕjγ0 (j = 1, 2, . . . )

• The autocovariance is given by
ρj = ϕj (j = 1, 2, . . . )

Example 2: Realizations of an AR(1) process
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The three processes are build from the same white noise realization. Notice how process
becomes more persistent as ϕ approaches 1.

3 Markov chains
Markov property

A stochastic process {Zt}∞t=0 has the Markov property if for all k ≥ 1 and all t,

P[Zt+1 |Zt, Zt−1, . . . , Zt−k] = P[Zt+1 |Zt]

That is, the the probability distribution of Zt+1 only depends upon the realization of Zt.

Example 3: AR(1) process
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• The AR(1) process is a Markov process:

Zt = (1− ρ)Z̄ + ρZt−1 + ϵt

where ρ ∈ [0, 1), and ϵt ∼ iidN(0, σ2) is a white noise process.

• Given Zt, next period’s variable Zt+1 is normally distributed with:

mean: E(Zt+1 |Zt) = (1− ρ)Z̄ + ρZt

variance: Var(Zt+1 |Zt) = σ2

Markov Chains
Markov chains are discrete valued Markov processes. They are characterized by three objects:

1. The n different realizations of Zt, represented by the column vector z = [z1, z2, . . . , zn]
′.

2. The probability distribution of the initial date t = 0, π0 = [π01, π02, . . . , π0n]
′, where π0i =

P[Z0 = zi].

3. The transition matrix P = (pij), where pij = P[Zt+1 = zj |Zt = zi], representing the dynamics
of the process.

Notice that

• pij ≥ 0 and
∑n

j=1 pij = 1.

• π0i ≥ 0 and
∑n

i=1 π0i = 1.

Example 4: Unemployment

A worker can either be employed or unemployed:

• If unemployed, she will get a job with probability p = 45%

• If employed, she will lose her job with probability q = 5%

The worker is employed at t = 0. Then the Markov chain is:

outcomes {unemployed, employed} or z =

[
0
1

]
.

initial probability π0 =

[
0
1

]
.

transition probability P =

[
1− p p
q 1− q

]
=

[
0.55 0.45
0.05 0.95

]

u e

0.45

0.55

0.05

0.95
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Example 5: Credit ratings
Transition of the credit ratings from one year to the next:

AAA AA A BBB BB B CCC D N.R.
AAA 90.34 5.62 0.39 0.08 0.03 0 0 0 3.5
AA 0.64 88.78 6.72 0.47 0.06 0.09 0.02 0.01 3.21
A 0.07 2.16 87.94 4.97 0.47 0.19 0.01 0.04 4.16
BBB 0.03 0.24 4.56 84.26 4.19 0.76 0.15 0.22 5.59
BB 0.03 0.06 0.4 6.09 76.09 6.82 0.96 0.98 8.58
B 0 0.09 0.29 0.41 5.11 74.62 3.43 5.3 10.76
CCC 0.13 0 0.26 0.77 1.66 8.93 53.19 21.94 13.14
D 0 0 0 0 1 3.1 9.29 51.29 37.32
N.R. 0 0 0 0 0 0.1 8.55 74.06 17.07

Transition probabilities are expressed in %.
• Higher ratings are more stable: the diagonal coefficients of the matrix go decreasing.
• Starting from the rating AA it is easier to be downgraded (probability 6.72%) than to be upgraded

(probability 0.64%).

Transition over multiple periods

• The transition matrix is also called a stochastic matrix.

• It defines the probabilities of moving from one value of the state to another in one period.

• The probability of moving from one value of the state to another in two periods is determined
by P2 because

P[Zt+2 = zj |Zt = zi]

=

n∑
h=1

P[Zt+2 = zj |Zt+1 = zh]× P[Zt+1 = zh|Zt = zi]

=

n∑
h=1

PihPhj = P
(2)
ij

The unconditional distribution
The probability distribution of Zt evolves according to π′

t+1 = π′
tP . Thereforeπ′

1 = π′
0P

π′
2 = π′

0P
2

...
π′
k = π′

0P
k

The limit for k → ∞ is the time invariant, stationary, or ergodic distribution of the Markov chain.
It is defined by

π′ = π′P ⇔ (I − P ′)π = 0

The limit exist and is independent of the initial distribution π0 if p(k)ij > 0 for some integer k ≥ 1.
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Example 6: Unemployment (cont.)
For the worker who can either be employed or unemployed according to Markov matrix

P =

[
1− p p
q 1− q

]
=

[
0.55 0.45
0.05 0.95

]
the stationary distribution

[
x 1− x

]′ is the solution to:{[
1 0
0 1

]
−
[
1− p q
p 1− q

]}[
x

1− x

]
=

[
p −q
−p q

] [
x

1− x

]
=

[
0
0

]

Then x = q
p+q and the stationary distribution is:

[
0.1
0.9

]
. This means that the long run probability

of being unemployed is 10%.
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