
Lecture 10
Dynamic Programming

Randall Romero Aguilar, PhD
Universidad de Costa Rica

EC3201 - Teoría Macroeconómica 2

I Semestre 2018

These notes were last updated June 4, 2018. A more recent version might be available at
http://randall-romero.com/teaching/

Table of contents

Contents
1 Introduction 1

2 Basics of dynamic programming 3

3 Dynamic programming: formal setup 7

4 Stochastic control problems 14

5 Consumption and financial assets: infinite horizon 14

6 Consumption and financial assets: finite horizon 17

7 Consumption and physical investment 25

1 Introduction
About this lecture

• We study how to use Bellman equations to solve dynamic programming problems.

• We consider a consumer who wants to maximize his lifetime consumption over an infinite
horizon, by optimally allocating his resources through time. Two alternative models:

1. the consumer uses a financial instrument (say a bank deposit without overdraft limit) to
smooth consumption;

2. the consumer has access to a production technology and uses the level of capital to smooth
consumption.

• To keep matters simple, we assume:

– a logarithmic instant utility function;

1

http://randall-romero.com/teaching/

– there is no uncertainty.

• To start, we review some math that we’ll need later.

Static optimization

• Optimization is a predominant theme in economic analysis.

• For this reason, the classical calculus methods of finding free and constrained extrema occupy
an important place in the economist’s everyday tool kit.

• Useful as they are, such tools are applicable only to static optimization problems.

• The solution sought in such problems usually consists of a single optimal magnitude for every
choice variable.

• It does not call for a schedule of optimal sequential action.

Dynamic optimization

• In contrast, a dynamic optimization problem poses the question of what is the optimal mag-
nitude of a choice variable in each period of time within the planning period.

• It is even possible to consider an infinite planning horizon.

• The solution of a dynamic optimization problem would thus take the form of an optimal time
path for every choice variable, detailing the best value of the variable today, tomorrow, and so
forth, till the end of the planning period.

Basic ingredients
A simple type of dynamic optimization problem would contain the following basic ingredients:

1. a given initial point and a given terminal point;

2. a set of admissible paths from the initial point to the terminal point;

3. a set of path values serving as performance indices (cost, profit, etc.) associated with the
various paths; and

4. a specified objective-either to maximize or to minimize the path value or performance index
by choosing the optimal path.

Alternative approaches to dynamic optimization
To find the optimal path, there are three major approaches:

1. the calculus of variations, dating back to the late 17th century, it works about variations in
the state path.

2. optimal control theory, the problem is viewed as having both a state and a control path,
focusing on variations of the control path.

3. dynamic programming, which embeds the control problem in a family of control problems,
focusing on the optimal value of the problem (value function).

2

Salient features of dynamic optimization problems

• Although dynamic optimization is mostly couched in terms of a sequence of time, it is also
possible to envisage the planning horizon as a sequence of stages in an economic process.

• In that case, dynamic optimization can be viewed as a problem of multistage decision making.

• The distinguishing feature, however, remains the fact that the optimal solution would involve
more than one single value for the choice variable.

• The multistage character of dynamic optimization can be illustrated with a simple discrete
example.

Example 1: Multistage decision making

• Suppose that a firm engages in transforming a certain substance from an initial state A
(raw material state) into a terminal state Z (finished product state) through a five-stage
production process.

• In every stage, the firm faces the problem of choosing among several possible alternative
subprocesses, each entailing a specific cost.

• The question is: How should the firm select the sequence of subprocesses through the five
stages in order to minimize the total cost?

state

stage0 1 2 3 4 5

A

B

C

D

E

F

G

H

I

J

K

Z

2

4

7

5

2

6

3

4

3

5

2

8

4

6

3

1

2

2 Basics of dynamic programming
The principle of optimality

The dynamic programming approach is based on the principle of optimality (Bellman, 1957)

3

An optimal policy has the property that, whatever the initial state and decision are, the
remaining decisions must constitute an optimal policy with regard to the state resulting
from the first decision.

Why dynamic programming?
Dynamic programming is a very attractive method for solving dynamic optimization problems

because

• it offers backward induction, a method that is particularly amenable to programmable com-
puters, and

• it facilitates incorporating uncertainty in dynamic optimization models.

Example 2: Solving the problem in example 1

• Let’s use dynamic programming to solve example 1.

• Before doing so, let’s use this problem to introduce some important concepts:

– choice and state variables
– reward and transition functions
– the value function
– the Bellman equation
– the policy function

state

stage0 1 2 3 4 5

A

B

C

D

E

F

G

H

I

J

K

Z

2

4

7

5

2

6

3

4

3

5

2

8

4

6

3

1

2

Choice variable In a given state s, firm can choose x among subprocess {1, 2, . . . , n}.

The reward function r(x, s) returns the cost incurred by choosing a specific subprocess x

4

when state is s. For example

r(1, A) = 2 r(1, G) = 2

r(2, A) = 4 r(2, G) = 8

The transition function g(x, s) returns the state s′ reached in next stage if current state is

s and current choice is x. E.g.

g(1, A) = B g(1, G) = I

g(2, A) = C g(2, G) = J

In this example, we can also think of the choice variable as deciding what state to go next:
x = s′.

The reward function r(s, s′) returns the cost of going from one state to the next. Examples

r(A,B) = 2 r(G, I) = 2

r(A,C) = 4 r(G, J) = 8

The transition function g(s, s′) is now very simple. E.g.

g(A,B) = B g(G, I) = I

g(A,C) = C g(G, J) = J

• Objective Select a sequence of subprocesses through the five stages in order to minimize

the total cost?

• A sequence is a function: for each stage t, it returns the state of the firm process, st ≡ s(t)

• Then, total cost is a functional: a function that depends on other function!

• For example

c(ABDGIZ) = 2 + 7 + 3 + 2 + 3 = 17 = c(11111)

c(ABEHKZ) = 2 + 5 + 3 + 6 + 2 = 18 = c(12121)

• In general, the objective function is
4∑

t=0

r(st, xt) subject to st+1 = g(xt, st), t = 0, . . . , 4

• The value function Vt(st) measures the best result that can be achieved in stage t given

the current state st.

Vt(st) = min
x0,...,x4

4∑
t=0

r(st, xt) s.t. st+1 = g(xt, st), t = 0, . . . , 4

5

• The policy function ht(st) returns the best choice that can be made in current state st

and stage t.

ht(st) = argmin
x0,...,x4

4∑
t=0

r(st, xt) s.t. st+1 = g(xt, st), t = 0, . . . , 4

The Bellman equation is based on the principle of optimality, which for the problem implies

Vt(st) = min
xt

{r(xt, st) + Vt+1(st+1)} s.t. st+1 = g(xt, st)

Vt(st) = min
xt

{r(xt, st) + Vt+1 (g(xt, st))}

Notice that, by definition of the policy function,

Vt(st) = r [ht(st), st] + Vt+1 [g (ht(st), st)]

Let’s use the Bellman equation to find the minimum cost of production:

Vt(st) = min
xt

{r(xt, st) + Vt+1 (g(xt, st))}

• Starting from the terminal state Z: cost to complete product is 0.

• Find the minimum cost from all stage-4 states until product completion.

• Find the minimum cost from all stage-3 states until product completion, taking into ac-
count the minimum costs from stage-4 states onward.

• Iterate until reaching stage-0 state

state

stage1 2 3 4 5543210

A

14

B

13

C

10

D

8

E

8

F

10

G

5

H

5

I

3

J

1

K

2

Z

02

4

7

5

2

6

3

4

3

5

2

8

4

6

3

1

2

Z

I

J

K

G

H

D

E

F

B

C

A

6

Stage State Value Policy
5 Z V5(Z) = 0 h5(Z) = Z

4 K V4(K) = min {2 + V5(Z)} = 2 h4(K) = Z
J V4(J) = min {1 + V5(Z)} = 1 h4(J) = Z
I V4(I) = min {3 + V5(Z)} = 3 h4(I) = Z

3 H V3(H) = min {4 + V4(J), 6 + V4(K)} = 5 h3(H) = J
G V3(G) = min {2 + V4(I), 8 + V4(J)} = 5 h3(G) = I

2 F V2(F) = min {5 + V3(H)} = 10 h2(F) = H
E V2(E) = min {3 + V3(H)} = 8 h2(E) = H
D V2(D) = min {3 + V3(G), 4 + V3(H)} = 8 h2(D) = G

1 C V1(C) = min {2 + V2(E), 6 + V1(F)} = 10 h1(C) = E
B V1(B) = min {7 + V2(D), 5 + V2(E)} = 13 h1(B) = E

0 A V0(A) = min {2 + V1(B), 4 + V1(C)} = 14 h0(A) = C

3 Dynamic programming: formal setup
Dynamic Programming: the basics

We now introduce basic ideas and methods of dynamic programming (Ljungqvist and Sargent
2004)

• basic elements of a recursive optimization problem

• the Bellman equation

• methods for solving the Bellman equation

• the Benveniste-Scheikman formula

Sequential problems

• Let β ∈ (0, 1) be a discount factor.

• We want to choose an infinite sequence of “controls” {xt}∞t=0 to maximize
∞∑
t=0

βtr(st, xt) (1)

subject to st+1 = g(st, xt), with s0 ∈ R given.

• We assume that r(st, xt) is a concave function and that the set {(st+1, st) : st+1 ≤ g(st, xt), xt ∈
R} is convex and compact.

Dynamic programming seeks a time-invariant policy function h mapping the state st into the
control xt, such that the sequence {xt}∞t=0 generated by iterating the two functions

xt = h(st)

st+1 = g(st, xt)

7

starting from initial condition s0 at t = 0, solves the original problem. A solution in the form of
equations is said to be recursive.

To find the policy function h we need to know the value function V (s), which expresses the
optimal value of the original problem, starting from an arbitrary initial condition s ∈ S. Define

V (s0) = max
{xs}∞

s=0

∞∑
t=0

βtr(st, xt)

subject to st+1 = g(st, xt), with s0 given.
We do not know V (s0) until after we have solved the problem, but if we knew it the policy

function h could be computed by solving for each s ∈ S the problem

max
x

{r(s, x) + βV (s′)} , s.t. s′ = g(s, x) (2)

Thus, we have exchanged the original problem of finding an infinite sequence of controls that
maximizes expression (1) for the problem of finding the optimal value function V (s) and a function
h that solves the continuum of maximum problems (2) —one maximum problem for each value of s.

The function V (s), h(s) are linked by the Bellman equation

V (s) = max
x

{r(s, x) + βV [g(s, x)]} (3)

The maximizer of the RHS is a policy function h(s) that satisfies

V (s) = r[s, h(s)] + βV {g[s, h(s)]} (4)

This is a functional equation to be solved for the pair of unknown functions V (s), h(s).

Some properties
Under various particular assumptions about r and g, it turns out that

1. The Bellman equation has a unique strictly concave solution.

2. This solution is approached in the limit as j → ∞ by iterations on

Vj+1(s) = max
x

{r(s, x) + βVj(s
′)}, s.t. s′ = g(s, x), s given

starting from any bounded and continuous initial V0.

3. There is a unique and time-invariant optimal policy of the form xt = h(st), where h is chosen
to maximize the RHS of the Bellman equation.

4. Off corners, the limiting value function V is differentiable.

Side note: Concave functions

• A real-valued function f on an interval (or, more generally, a convex set in vector space)
is said to be concave if, for any x and y in the interval and for any t ∈ [0, 1],

f((1− t)x+ ty) ≥ (1− t)f(x) + tf(y)

• A function is called strictly concave if

f((1− t)x+ ty) ≥ (1− t)f(x) + tf(y)

for any t ∈ (0, 1) and x ̸= y.

8

Side note: Concave functions (2) For a function f : R 7→ R, this definition merely states
that for every z between x and y, the point (z, f(z)) on the graph of f is above the straight line

joining the points (x, f(x)) and (y, f(y)). x

f(x)

y

f(y)

(1− t)f(x) + tf(y)

Side note: Fixed points

• A point x∗ is a fixed-point of function f if it satisfies f(x∗) = x∗.

• Notice that f(f(. . . f(x∗) . . .)) = x∗.

f

x

y = x

x∗0

x∗1

Side note: Contraction mappings A mapping f : X 7→ X from a metric space X into
itself is said to be a strong contraction with modulus δ, if 0 ≤ δ < 1 and

d(f(x), f(y)) ≤ δd(x, y)

9

for all x and y in X.

f

t

f(t)

|x− y|

|f(x)− f(y)|

x y

Side note: Banach Fixed-Point Theorem If f is a strong contraction on a metric space X,
then

• it possesses an unique fixed-point x∗, that is f(x∗) = x∗

• if x0 ∈ X and xi+1 = f(xi), then the xi converge to x∗

Proof: Use x0 and x∗ in the definition of a strong contraction:

d(f(x0), f(x∗)) ≤ δd(x0, x
∗) ⇒

d(x1, x∗) ≤ δd(x0, x
∗) ⇒

d(xk, x∗) ≤ δkd(x0, x
∗) → 0 as k → ∞

Example 3: Searching a fixed point by function iteration

• Consider finding a fixed point for the function f(x) = 1 + 0.5x, for x ∈ R.

• It is easy to see that x∗ = 2 is a fixed point:

f(x∗) = f(2) = 1 + 0.5(2) = 2 = x∗

• Suppose we could not solve the equation x = 1 + 0.5x directly. How could we find the
fixed point then?

• Notice that |f ′(x)| = |0.5| < 1, so f is a contraction.

By Banach Theorem, if we start from an arbitrary point x0 and by iteration we form the

10

sequence xj+1 = f(xj), it follows that limj→∞ xj = x∗. For example, pick:

x0 = 6

x1 = f(x0) = 1 + 6
2 = 4

x2 = f(x1) = 1 + 4
2 = 3

x3 = f(x2) = 1 + 3
2 = 2.5

x4 = f(x3) = 1 + 2.5
2 = 2.25

...

f

x

f(t)

x0

If we keep iterating, we will get arbitrarily close to the solution x∗ = 2.

First-order necessary condition
Starting with the Bellman equation

V (s) = max
x

{r(s, x) + βV [g(s, x)]}

Since the value function is differentiable, the optimal x∗ ≡ h(s) must satisfy the first-order
condition

rx(s, x
∗) + βV ′{g(s, x∗)}gx(s, x∗) = 0 (FOC)

Envelope condition
According to (4): V (s) = r[s, h(s)] + βV {g[s, h(s)]}
If we also assume that the policy function h(s) is differentiable, differentiation of this expression

yields

V ′(s) = rs[s, h(s)] + rx[s, h(s)]h
′(s)

+ βV ′{g[s, h(s)]} {gs[s, h(s)] + gx[s, h(s)]h
′(s)}

Arranging terms, substituting x∗ = h(s) as the optimal policy

V ′(s) = rs(s, x
∗) + βV ′[g(s, x∗)]gs(s, x

∗)

+ {rx[s, x∗] + βV ′{g[s, x∗]}gx[s, x∗]}h′(s)

11

The highlighted part cancels out because of (FOC), therefore

V ′(s) = rs(s, x
∗) + βV ′ (s′) gs(s, x

∗)

Notice that we could have obtained this result much faster by taking derivative of

V (s) = r(s, x∗) + βV [g(s, x∗)]

with respect to the state variable s as if the control variable x∗ ≡ h(s) did not depend on s.

Benveniste and Scheinkman formula
In the envelope condition

V ′(s) = rs(s, x
∗) + βV ′ (s′) gs(s, x

∗)

when the states and controls can be defined in such a way that only x appears in the transition
equation, i.e.,

s′ = g(x) ⇒ gs(s, x
∗) = 0,

the derivative of the value function becomes

V ′(s) = rs[s, h(s)] (B-S)

This is a version of a formula of Benveniste and Scheinkman.

Euler equations

• In many problems, there is no unique way of defining states and controls

• When the states and controls can be defined in such a way that s′ = g(x), the (FOC) for the
Bellman equation together with the (B-S) formula implies

rx(st, xt) + βrs(st+1, xt+1)g
′(xt) = 0

• This equation is called an Euler equation.

• If we can write xt as a function of st+1, we can use it to eliminate xt from the Euler equation
to produce a second-order difference equation in st.

Solving the Bellman equation

• In those cases in which we want to go beyond the Euler equation to obtain an explicit solution,
we need to find the solution V of the Bellman equation (3)

• Given V , it is straightforward to solve (3) successively to compute the optimal policy.

• However, for infinite-horizon problems, we cannot use backward iteration.

12

Three computational methods

• There are three main types of computational methods for solving dynamic programs. All aim
to solve the Bellman equation

– Guess and verify
– Value function iteration
– Policy function iteration

• Each method is easier said than done: it is typically impossible analytically to compute even
one iteration.

• Usually we need computational methods for approximating solutions: pencil and paper are
insufficient.

Example 4: Computer solution of DP models
There are several computer programs available for solving dynamic programming models:

• The CompEcon toolbox, a MATLAB toolbox accompanying Miranda and Fackler (2002)
textbook.

• The PyCompEcon toolbox, my (still incomplete) Python version of Miranda and Fackler
toolbox.

• Additional examples are available at quant-econ, a website by Sargent and Stachurski with
Python and Julia scripts.

Guess and verify

• This method involves guessing and verifying a solution V to the Bellman equation.

• It relies on the uniqueness of the solution to the equation

• because it relies on luck in making a good guess, it is not generally available.

Value function iteration

• This method proceeds by constructing a sequence of value functions and associated policy
functions.

• The sequence is created by iterating on the following equation, starting from V0 = 0, and
continuing until Vj has converged:

Vj+1(s) = max
x

{r(s, x) + βVj [g(s, x)]}

Policy function iteration
This method, also known as Howard’s improvement algorithm, consists of the following steps:

1. Pick a feasible policy, x = h0(s), and compute the value associated with operating forever with
that policy:

Vhj
(s) =

∞∑
t=0

βtr[st, hj(st)]

where st+1 = g[st, hj(st)], with j = 0.

13

https://mitpress.mit.edu/books/applied-computational-economics-and-finance
http://randall-romero.com/code/compecon/
http://lectures.quantecon.org/

2. Generate a new policy x = hj+1(s) that solves the two-period problem

max
x

{r(s, x) + βVhj [g(s, x)]}

for each s.

3. Iterate over j to convergence on steps 1 and 2.

4 Stochastic control problems
Stochastic control problems

• We modify the transition equation and consider the problem of maximizing

E0

∞∑
t=0

βtr(st, xt) s.t. st+1 = g(st, xt, ϵt+1) (5)

with s0 given at t = 0

• ϵt is a sequence of i.i.d. random variables with cumulative probability distribution function
P[ϵt ≤ e] = F (e) for all t

• ϵt+1 is realized at t+ 1, after xt has been chosen at t.

• At time t:

– st is known
– st+j is unknown (j ≥ 1)

• The problem is to choose a policy or contingency plan xt = h(st). The Bellman equation is

V (s) = max
x

{r(s, x) + β E[V (s′) | s]}

• where s′ = g(s, x, ϵ),

• and E{V (s′) |s} =
∫
V (s′) dF (ϵ)

• The solution V (s) of the Bellman equation can be computed by value function iteration.

• The first-order necessary condition for the problem is

rx(s, x) + β E {V ′ (s′) gx(s, x, ϵ) | s} = 0

• When the states and controls can be defined in such a way that s does not appear in the
transition equation,

V ′(s) = rs[s, h(s)]

• Substituting this formula into the first-order necessary condition gives the stochastic Euler
equation

rx(s, x) + β E {rs(s′, x′)gx(s, x, ϵ) | s} = 0

5 Consumption and financial assets: infinite horizon
Consumption and financial assets

To ilustrate how dynamic programming works, we consider a intertemporal consumption prob-
lem.

14

The consumer

• Planning horizon: infinite

• Instant utility depends on current consumption: u(ct)

• Constant utility discount rate β ∈ (0, 1)

• Lifetime utility is:

U(c0, c1, . . .) =

∞∑
t=0

βtu(ct)

• The problem: choosing the optimal sequence of values {c∗t } that will maximize U , subject to
a budget constraint.

A savings model
The consumer

• is endowed with A0 units of the consumption good,

• does not have income

• can save in a bank deposit, which yields a interest rate r.

The budget constraint is
At+1 = R(At − ct)

where R ≡ 1 + r is the gross interest rate.

The value function

• Once he chooses the sequence {c∗t }∞t=0 of optimal consumption, the maximum utility that he
can achieved is ultimately constraint only by his initial assets A0.

• So define the value function V as the maximum utility the consumer can get as a function of
his initial assets

V (A0) = max
{ct,At+1}∞

t=0

∞∑
t=0

βtu(ct)

subject to At+1 = R(At − ct)

The consumer problem
Consumer problem:

V (A0) = max
{ct,At+1}∞

t=0

∞∑
t=0

βtu(ct) (objective)

At+1 = R(At − ct) ∀t = 0, . . . , T (budget constraint)

Simplifying notation
In what follows, we write the intertemporal restriction as

gt ≡ g(At, At+1, ct) = R(At − ct)−At+1 = 0

15

A recursive approach to solving the problem

V (A0) = max
{ct,At+1}∞

t=0

∞∑
t=0

{
βtu(ct) + λtgt

}
= max

{ct,At+1}∞
t=0

{
u(c0) + λ0g0 +

∞∑
t=1

[
βtu(ct) + λtgt

]}

= max
{ct,At+1}∞

t=0

{
u(c0) + λ0g0 + β

∞∑
t=1

[
βt−1u(ct) + λtgt

]}

“An optimal policy has the property that, whatever the initial state and decision are, the remaining decisions must constitute
an optimal policy with regard to the state resulting from the first decision.”

= max
c0, A1

{
u(c0) + λ0g0 + β max

{ct+1,At+2}∞
t=0

∞∑
t=0

{
βtu(ct+1) + λt+1gt+1

}}
= max

c0, A1

{u(c0) + βV (A1) + λ0 [R(A0 − c0)−A1]}

The Bellman equation

Bellman equation V (A) = max
c, A′

{u(c) + βV (A′) + λ[R(A− c)−A′]}

• This says that the maximum lifetime utility the consumer can get must be equal to the sum of
current utility plus the discounted value of the lifetime utility he will get starting next period.

Solving the Bellman equation
The Lagrangian for this problem is

V (A) = max
c, A′

{u(c) + βV (A′) + λ[R(A− c)−A′]}

so the FOCs are

u′(c) = λR

βV ′(A′) = λ

}
⇒ u′(c) = βRV ′(A′)

and the envelope condition is

V ′(A) = λR = u′(c)

which implies that

V ′(A′) = u′(c′)

The Euler equation
Substitution of the envelope condition in the FOC results in

Euler equation u′(c) = βRu′(c′)

• This says that at the optimum, if the consumer gets one more unit of the good, he must be
indifferent between consuming it now (getting u′(c)) or saving it (which increases next-period
assets by R) an consuming it later, getting a discounted value of βRu′(c′).

16

Solving the Euler equation
Notice that the Euler equation can be written

u′
(
At −

At+1

R

)
= βRu′

(
At+1 −

At+2

R

)
which is a second-order nonlinear difference equation. In principle, it can be solved to obtain the

Policy function
c∗t = h(At) consumption function

At+1 = R[At − h(At)] asset accumulation

6 Consumption and financial assets: finite horizon
The consumer

• Planning horizon: T (possibly infinite)

• Instant utility depends on current consumption: u(ct) = ln ct

• Constant utility discount rate β ∈ (0, 1)

• Lifetime utility is:

U(c0, c1, . . . , cT) =

T∑
t=0

βt ln ct

• The problem: choosing the optimal values c∗t that will maximize U , subject to a budget
constraint.

A savings model
In this first model, the consumer

• is endowed with A0 units of the consumption good,

• does not have income

• can save in a bank deposit, which yields a interest rate r.

The budget constraint is
At+1 = R(At − ct)

where R ≡ 1 + r is the gross interest rate.

The value function

• Once he chooses the sequence {c∗t }Tt=0 of optimal consumption, the maximum utility that he
can achieved is ultimately constraint only by his initial assets A0 and by how many periods he
lives T + 1.

• So define the value function V as the maximum utility the consumer can get as a function of
his initial assets

V0(A0) = max
{ct}

T∑
t=0

βt ln c∗t

subject to At+1 = R(At − ct)

17

The consumer problem
Consumer problem:

V0(A0) = max
{c,A}

T∑
t=0

βt ln ct (objective)

At+1 = R(At − ct) ∀t = 0, . . . , T (budget constraint)
AT+1 ≥ 0 (leave no debts)

We now solve the problem for special cases t = T , t = T − 1, t = T − 2. Then we generalize for
T = ∞.

Solution when t = T
In this case, consumer problem is simply

VT (AT) = max
cT ,AT+1

{ln cT } subject to

AT+1 = R(AT − cT), AT+1 ≥ 0

We need to find cT and AT+1. Substitute cT = AT − AT+1

R in the objective function:

max
AT+1

ln
[
AT − AT+1

R

]
subject to AT+1 ≥ 0

This function is strictly decreasing on AT+1, so we set AT+1 to its minimum possible value; given
the transversality constraint we set AT+1 = 0, which implies cT = AT and VT (AT) = lnAT . In
words, in his last period a consumer spends his entire assets.

Solution when t = T − 1
The problem is now

VT−1(AT−1) = {ln cT+1 + β ln cT } subject to
AT = R (AT−1 − cT−1) ,

AT+1 = R(AT − cT), AT+1 ≥ 0

• We now need to find cT−1, cT , AT and AT+1.

• Instead of solving today for all these quantities, we proceed in two steps:

– today (that is, in T − 1) we solve only for cT−1 and AT

– and next period solving for the remaining cT and AT+1.

• But from the t = T example we learned that a consumer will spend his entire assets in the
last period, so cT = AT (his remaining assets, which he will choose in the current period) and
AT+1 = 0.

So we can rewrite the problem as

VT−1(AT−1) = max
cT−1:T ,AT :T+1

{ln cT−1 + β ln cT }

= max
cT−1,AT

{
ln cT−1 + β max

cT ,AT+1

[ln cT]
}

= max
cT−1,AT

{ln cT−1 + βVT (AT)}

subject to AT = R(AT−1 − cT)

18

Again, we substitute cT−1 = AT−1 − AT

R and solve the problem

max
AT

{
ln

[
AT−1 −

AT

R

]
+ βVT (AT)

}
The first order condition is

1

cT−1

−1

R
+ βV ′

T (AT) = 0 ⇒ 1 = RβcT−1V
′
T (AT)

Since VT (A) = lnA (from the t = T example), then V ′
T (AT) =

1
AT

. Substitute in the FOC

1 = RβcT−1
1

AT
⇒ A∗

T = Rβc∗T−1

Now substitute in the BC to get Rβc∗T−1 = R(AT−1 − c∗T−1). It follows that

c∗T−1 = 1
1+βAT−1 ⇒ A∗

T = Rβ
1+βAT−1

The value function is

VT−1(AT−1) = ln c∗T−1 + βVT (A
∗
T)

= ln c∗T−1 + β lnA∗
T

= ln c∗T−1 + β ln[Rβc∗T−1]

= (1 + β) ln c∗T−1 + β lnβ + β lnR

=
(1 + β) lnAT−1 − (1 + β) ln(1 + β) + . . .

· · ·+ β lnβ + β lnR
= (1 + β) lnAT−1 + θT−1

where the term θT−1 is just a constant.

Solution when t = T − 2
The problem is now

VT−2(AT−2) = max
{

ln cT−2 + β ln cT−1 + β2 ln cT
}

subject to
AT−1 = R(AT−2 − cT−2),

AT = R(AT−1 − cT−1),

AT+1 = R(AT − cT),

AT+1 ≥ 0

We will follow the same strategy as before: choose only cT−2 and AT−1 this period, and leave
cT−1, cT , AT , AT+1 for next period.

VT−2(AT−2) = max
cT−2:T ,

AT−1:T+1

{
ln cT−2 + β ln cT−1 + β2 ln cT

}

= max
cT−2,AT−1

ln cT−2 + β max
cT−1:T ,
AT :T+1

[ln cT−1 + β ln cT]


= max

cT−2,AT−1

{ln cT−2 + βVT−1(AT−1)}

19

Again, we substitute cT−2 = AT−2 − AT−1

R and solve the problem

max
AT−1

{
ln

[
AT−2 −

AT−1

R

]
+ βVT−1(AT−1)

}
The first order condition is now

1

cT−2

−1

R
+ βV ′

T−1(AT−1) = 0 ⇒ 1 = RβcT−2V
′
T−1(AT−1)

But VT−1(A) = (1+β) lnA+θT−1 (from the t = T −1 step). Therefore V ′
T−1(AT−1) =

1+β
AT−1

. Substitute
in the FOC

1 = RβcT−2
1+β
AT−1

⇒ A∗
T−1 = R(β + β2)c∗T−2

Now substitute in the budget constraint to get (1 + β)Rβc∗T−2 = R(AT−2 − c∗T−2). Then

c∗T−2 = 1
1+β+β2AT−2 ⇒ A∗

T−1 = R(β+β2)
1+β+β2 AT−2

and the value function is

VT−2(AT−2) = ln c∗T−2 + βVT−1(A
∗
T−1)

= ln c∗T−2 + β[(1 + β) ln(A∗
T−1) + θT−1]

= ln c∗T−2 + (β + β2) ln[R(β + β2)c∗T−2] + βθT−1

=
(1 + β + β2) ln c∗T−2 + (β + β2)[lnR+ . . .

· · ·+ ln(β + β2)] + βθT−1

= (1 + β + β2) lnAT−2 + θT−2

where θT−2 = (β + 2β2) lnR+ (β + 2β2) lnβ − (1 + β + β2) ln(1 + β + β2)

Solution when t = T −K
If we keep iterating, for t = T −K the problem would be

VT−K(AT−K) = max
{

ln cT−K + β ln cT−K+1 + · · ·+ βK ln cT
}

subject to
At+1 = R(At − ct), for t = T −K,T −K + 1, . . . , T

AT+1 ≥ 0

We will follow the same strategy as before: choose only cT−K and AT−K+1 this period, and leave
the other variables for next period.

VT−K(AT−K) =

max
cT−K ,

AT−K+1

ln cT−K + β max
cT−K+1:T ,

AT−K+2:T+1

[ln cT−K+1 + · · ·+ βK−1 ln cT]


= max

cT−K ,
AT−K+1

{ln cT−K + βVT−K+1(AT−K+1)}

20

Again, we substitute cT−K = AT−K − AT−K+1

R and solve the problem

max
AT−K

{
ln

[
AT−K − AT−K+1

R

]
+ βVT−K+1(AT−K+1)

}
The first order condition is now

1

cT−K

−1

R
+ βV ′

T−K+1(AT−K+1) = 0

which can be written as

1 = RβcT−KV
′
T−K+1(AT−K+1)

But now we don’t know VT−K+1(A), unless we solve for all intermediate steps. Instead of doing
that, we will search for patterns in our results.

Searching for patterns
Let’s summarize the results for the policy function.

t c∗t A∗
t+1

T AT 0AT

T − 1
1

1+βAT−1 Rβ 1
1+βAT−1

T − 2
1

1+β+β2AT−2 Rβ 1+β
1+β+β2AT−2

We could guess that after K iterations:

T −K
1

1+β+···+βKAT−K Rβ 1+β+···+βK−1

1+β+···+βK AT−K

=
1− β

1− βK+1
AT−K Rβ

1− βK

1− βK+1
AT−K

The time path of assets
Since AT−K+1 = Rβ 1−βK

1−βK+1AT−K , setting K = T, T − 1:

A1 = Rβ
1− βT

1− βT+1
A0

A2 = Rβ
1− βT−1

1− βT
A1

= (Rβ)2
1− βT−1

1− βT+1
A0

Iterating in this fashion we find that

At = (Rβ)t
1− βT+1−t

1− βT+1
A0

21

The time path of consumption
Since c∗T−K = 1−β

1−βK+1AT−K , setting t = T −K:
Then consumption

c∗t =
1− β

1− βT+1−t
At

=
1− β

1− βT+1−t

[
(Rβ)t

1− βT+1−t

1− βT+1
A0

]
= (Rβ)t

1− β

1− βT+1
A0

ϕ

That is
ln c∗t = t ln(Rβ) + lnϕ

The time 0 value function
Substitution of the optimal consumption path in the Bellman equation give the value function

V0(A0) ≡
T∑

t=0

βt ln c∗t =

T∑
t=0

βt (t ln(Rβ) + lnϕ)

= ln(Rβ)
T∑

t=0

βtt+ lnϕ
T∑

t=0

βt

=
β

1− β

(
1− βT

1− β
− TβT

)
ln(Rβ) + 1− βT+1

1− β
lnϕ

=

β

1− β

(
1− βT

1− β
− TβT

)
ln(Rβ) + . . .

+
1− βT+1

1− β
ln 1− β

1− βT+1
+

1− βT+1

1− β
lnA0

From finite horizon to infinite horizon
Our results so far are

At = (Rβ)t
1− βT+1−t

1− βT+1
A0 c∗t = (Rβ)t

1− β

1− βT+1
A0

V0(A0) =
β

1 − β

(
1 − βT

1 − β
− Tβ

T

)
ln(Rβ) +

1 − βT+1

1 − β
ln

1 − β

1 − βT+1
+

1 − βT+1

1 − β
ln A0

Taking the limit as T → ∞

At = (Rβ)tA0 c∗t = (Rβ)t(1− β)A0 = (1− β)At

V0(A0) =
1

1− β
lnA0 +

β lnR+ β lnβ + (1− β) ln(1− β)

(1− β)2

22

The policy function

Policy function
c∗t = (1− β)At consumption function

At+1 = RβAt asset accumulation

• This says that the optimal consumption rule is, in every period, to consume a fraction 1 − β
of available initial assets.

• Over time, assets will increase, decrease or remain constant depending on how the degree of
impatience β compares to reward to postpone consumption R.

Time-variant value function
Now let’s summarize the results for the value function:

t Vt(A)

T lnA
T − 1 (1 + β) lnA+ θT−1

T − 2 (1 + β + β2) lnA+ θT−2

...
Notice that the value function changes each period, but only because each period the remaining

horizon becomes one period shorter.

Time-invariant value function
Remember that in our K iteration,

VT−K(AT−K) = max
cT−K ,

AT−K+1

{ln cT−K + βVT−K+1(AT−K+1)}

With an infinite horizon, the remaining horizon is the same in T −K and in T −K+1, so the value
function is the same, precisely the fixed-point of the Bellman equation. Then we can write

V (AT−K) = max
cT−K ,

AT−K+1

{ln cT−K + βV (AT−K+1)}

or simply
V (A) = max

c,A′
{ln c+ βV (A′)}

where a prime indicates a next-period variable

The first order condition
Using the budget constraint to substitute consumption

V (A) = max
A′

{
ln

(
A− A′

R

)
+ βV (A′)

}
we obtain the FOC:

1 = RβcV ′(A′)

Despite not knowing V , we can determine its first derivative using the envelope condition.Thus, from

V (A) = ln
(
A− A′∗

R

)
+ βV (A′∗)

we get
V ′(A) =

1

c

23

The Euler condition

• Because the solution is time-invariant, V ′(A) = 1
c implies that V ′(A′) = 1

c′ .

• Substitute this into the FOC to obtain the

Euler equation 1 = Rβ
c

c′
= Rβ

u′(c′)

u′(c)

• This says that the marginal rate of substitution of consumption between any consecutive
periods u′(c)

βu′(c′) must equal the relative price of the later consumption in terms of the earlier
consumption R.

Value function iteration

• Suppose we wanted to solve the infinite horizon problem

V (A) = max
c,A′

{ln c+ βV (A′)} subject toA′ = R(A− c)

by value function iteration:

Vj+1(A) = max
c,A′

{ln c+ βVj(A
′)} subject toA′ = R(A− c)

• If we start iterating from V0(A) = 0 , our iterations would look identical to the procedure we
used to solve for the finite horizon problem!

• Then, our iterations would look like

j Vj(A)

0 0
1 lnA
2 (1 + β) lnA+ θ2
3 (1 + β + β2) lnA+ θ3

...

• If we keep iterating, we would expect that the coefficient on lnA would converge to 1 + β +
β2 + · · · = 1

1−β

• However, it is much harder to see a pattern on the θj sequence.

• Then, we could try now the guess and verify, guessing that the solution takes the form V (A) =
1

1−β lnA+ θ.

Guess and verify

• Our guess: V (A) = 1
1−β lnA+ θ

• Solution must satisfy the FOC: 1 = RβcV ′(A′) and budget constraint A′ = R(A− c).

• Combining these conditions we find c∗ = (1− β)A and A′∗ = RβA.

• To be a solution of the Bellman equation, it must be the case that both sides are equal:

24

LHS RHS
V (A) ln c∗ + βV (A′∗)

1
1−β lnA+ θ

= ln(1− β)A+ β
[

ln A′∗

1−β + θ
]

= ln(1− β)A+ β
[

ln RβA
1−β + θ

]
= 1

1−β lnA+ β
1−β lnRβ + ln(1− β) + βθ

The two sides are equal if and only if

θ = β
1−β lnRβ + ln(1− β) + βθ

That is, if
θ =

β lnR+ β lnβ + (1− β) ln(1− β)

(1− β)2

Why the envelope condition works?
The last point in our discussion is to justify the envelope condition: deriving V (A) pretending

that A′∗ did not depend on A. But we know it does, so write A′∗ = h(A) for some function h. From
the definition of the value function write:

V (A) = ln
[
A− h(A)

R

]
+ βV (h(A))

Take derivative and arrange terms:

V ′(A) =
1

c

[
1− h′(A)

R

]
+ βV ′(h(A))h′(A)

=
1

c
+

[
−1

cR
+ βV ′(A′∗)

]
h′(A)

but the term in square brackets must be zero from the FOC.

7 Consumption and physical investment
A model with production

In this model

• the consumer is endowed with k0 units of a good that can be used either for consumption or
for the production of additional good

• we refer to “capital” to the part of the good that is used for future production

• capital fully depreciates with the production process.

• The lifetime utility of the consumer is again U(c0, c1, . . . , c∞) =
∑∞

t=0 β
t ln ct,

• The production function is y = Akα, where A > 0 and 0 < α < 1 are parameters.

• The budget constraint is ct + kt+1 = Akαt .

25

The consumer problem

Consumer problem:

V (k0) = max
{c,k′}

∞∑
t=0

βt ln ct (objective)

k′ = Akα − c (resource constraint)

The Bellman equation

• In this case, the Bellman equation is

V (k0) = max
c0,k1

{ln c0 + βV (k1)}

• Substitute the constraint c0 = Akα0 − k1 in the BE. To simplify notation, we drop the time
index and use a prime (as in k′) to denote “next period” variables. Then, BE is

V (k) = max
k′

{ln(Akα − k′) + βV (k′)}

• We will solve this equation by value function iteration.

Solving Bellman equation by function iteration

• How do we solve the Bellman equation?

V (k) = max
k′

{ln(Akα − k′) + βV (k′)}

• This equation involves a functional, where the unknown is the function V (k).

• Unfortunately, we cannot solve for V directly.

• However, this equation is a contraction mapping (as long as |β| < 1) that has a fixed point
(its solution).

• Let’s pick an initial guess (V0(k) = 0 is a convenient one) and them iterate over the Bellman
equation by1

Vj+1(k) = max
k′

{ln(Akα − k′) + βVj(k
′)}

Starting from V0 = 0, the problem becomes:

V1(k) = max
k′

{ln(Akα − k′) + β × 0}

Since the objective is decreasing on k′ and we have the restriction k′ ≥ 0, the solution is simply
k′∗ = 0. Then c∗ = Akα

V1(k) = ln c∗ + β × 0

= lnA+ α ln k
1The j subscript refers to an iteration, not to the horizon.

26

This completes our first iteration. Let’s now find V2:

V2(k) = max
k′

{ln(Akα − k′) + β[lnA+ α ln k′]}

FOC is
1

Akα − k′
=
αβ

k′
⇒ k′∗ =

αβ

1 + αβ
Akα = θ1Ak

α

Then consumption is c∗ = (1− θ1)Ak
α = 1

1+αβAk
α and

V2(k) = ln(c∗) + β lnA+ αβ ln k′∗

= ln(1− θ1) + ln(Akα) + β[lnA+ α ln θ1 + α ln(Akα)]
= (1 + αβ) ln(Akα) + β lnA+ [ln(1− θ1) + αβ ln θ1]
= (1 + αβ) ln(Akα) + ϕ1

This completes the second iteration.
Let’s have one more:

V3(k) = max
k′

{ln(Akα − k′) + β[(1 + αβ) ln(Ak′α) + ϕ1]}

The FOC is
1

Akα − k′
=
αβ(1 + αβ)

k′

k′∗ =
αβ + α2β2

1 + αβ + α2β2
Akα = θ2Ak

α

Then consumption is c∗ = (1− θ2)Ak
α = 1

1+αβ+α2β2Ak
α

Searching for patterns
You might be tired by now of iterating this function. Me too! So let’s try to find some patterns

(unless you really want to iterate to infinity). Let’s summarize the results for the consumption policy
function.

j c∗

1 (1)−1Akα

2 (1 + αβ)−1Akα

3 (1 + αβ + α2β2)−1Akα

From this table, we could guess that after j iterations, the consumption policy would look like:

c∗j = (1 + αβ + . . .+ αjβj)−1Akα

Iterating to infinity

• To converge to the fixed point, we need to iterate to infinity.

• Simply take the limit j → ∞ of the consumption function: since 0 < αβ < 1, the geometric
series converges, and so

c∗ = (1− αβ)Akα

k′∗ = αβAkα

27

The time path of capital and consumption
Optimal capital evolves according to:

ln k∗1 = ln (αβA) + α ln k0
= (1− α)ψ + α ln k0 ⇒

ln k∗1 − ψ = α(ln k0 − ψ) ⇒
ln k∗t − ψ = αt(ln k0 − ψ) ⇒

ln k∗t = ψ(1− αt) + αt ln k0

ψ ≡ ln(αβA)
1− α

Optimal consumption is then:

ln c∗t = ln[A(1− αβ)] + α ln k∗t
= ln[A(1− αβ)] + αψ(1− αt) + αt+1 ln k0

The value function
The value function is then:

V (k0) ≡
∞∑
t=0

βt ln(c∗t)

=

∞∑
t=0

{
βt ln[A(1− αβ)] + αψβt(1− αt) + βtαt+1 ln k0

}
=

ln[A(1− αβ)]

1− β
+ αψ

[
1

1− β
− 1

1− αβ

]
+
α ln k0
1− αβ

=
ln[A(1− αβ)]

1− β
+ α

ln(αβA)
1− α

[
β(1− α)

(1− β)(1− αβ)

]
+
α ln k0
1− αβ

=
ln[A(1− αβ)]

1− β
+

αβ ln(αβA)
(1− β)(1− αβ)

+
α ln k0
1− αβ

Solving by guess and verify

• Since we already know the answer, we’ll guess a function of the correct form, but leave its
coefficients undetermined.

• This is called the method of undetermined coefficients.

• Thus, we make the guess V (k) = E + F ln k where E and F are undetermined constants.

• In this case, the Bellman equation is

V (k) = max
k′

{ln(Akα − k′) + βE + βF ln k′}

• FOC is
1

Akα − k′
=
βF

k′
⇒ k′∗ = βF

1+βF Ak
α ⇒ c∗ = 1

1+βF Ak
α

28

Substitute in the Bellman equation is

V (k) = ln c∗ + βE + βF ln k′∗

E + F ln k = ln
(

1
1+βF Ak

α
)
+ βE + βF ln

(
βF

1+βF Ak
α
)

= ln A
1+βF + α ln k + βE + βF ln AβF

1+βF + αβF ln k

=
{

ln A
1+βF + βE + βF ln AβF

1+βF

}
+ α(1 + βF) ln k

Therefore
F = α(1 + βF) ⇒ F = α

1−αβ

And

(1− β)E = ln A
1+βF + βF ln AβF

1+βF

E = 1
1−β

{
ln[A(1− αβ)] + αβ

1−αβ ln(αβA)
}

1 + βF = 1
1−αβ

βF
1+βF

= αβ

A
1+βF

= A(1 − αβ)

Finally, substitute in FOC to get:

k′∗ = βF
1+βF Ak

α = αβAkα

c∗ = 1
1+βF Ak

α = (1− αβ)Akα

V (k) = E + F ln k

= 1
1−β

{
ln[A(1− αβ)] + αβ

1−αβ ln(αβA)
}
+ α

1−αβ ln k

References
Chiang, Alpha C. (1992). Elements of Dynamic Optimization. McGraw-Hill, Inc.
Ljungqvist, Lars and Thomas J. Sargent (2004). Recursive Macroeconomic Theory. 2nd ed. MIT

Press. isbn: 0-262-12274-X.
Miranda, Mario J. and Paul L. Fackler (2002). Applied Computational Economics and Finance. MIT

Press. isbn: 0-262-13420-9.
Romero-Aguilar, Randall (2016). CompEcon-Python. url: http://randall-romero.com/code/

compecon/.
Sargent, Thomas J. and John Stachurski (2016). Quantitative Economics. url: http://lectures.

quantecon.org/.

29

http://randall-romero.com/code/compecon/
http://randall-romero.com/code/compecon/
http://lectures.quantecon.org/
http://lectures.quantecon.org/

	Introduction
	Basics of dynamic programming
	Dynamic programming: formal setup
	Stochastic control problems
	Consumption and financial assets: infinite horizon
	Consumption and financial assets: finite horizon
	Consumption and physical investment

