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The Work-Leisure Decision



The setup

• There are only two goods: consumption goods C and time.
• Barter economy: consumer exchanges work time for
consumption good.

• Price of consumption is 1.
• One hour of work is worth w units of consumption.

• Consumer is endowed with h hours, to be used in:
leisure: l = time used at home
work: N s = time exchanged in the market (labor

time)
• The time constraint for the consumer is then

l +N s = h

which states that leisure time plus time spent working
must sum to total time available.
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The consumer’s real disposable income

• For his work, consumer gets wN s = w(h− l) units of
consumption good.

• Consumer also receives π units of consumption good, in
the form of real dividend income.

• Consumer must pay a lump-sum tax amount T to the
government.

• Therefore, the budget constraint is

C = w(h− l) + π − T

• which can also be written as

C + wl = wh+ π − T
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The budget constraint

When T > π When T < π
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The consumer’s preferences

The representative consumer’s preferences are defined by

U(C, l)

with U(·, ·) a function that
is:

• increasing in both
arguments,

• strictly quasiconcave,
and

• twice differentiable.
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The consumer’s problem

• The consumer’s optimization problem is to choose C and
l so as to maximize U(C, l) subject to his or her budget
constraint—that is,

max
C,l

U(C, l) s.t.
{
C = w(h− l) + π − T

l ≤ h

• This problem is a constrained optimization problem, with
the associated Lagrangian

L = U(C, l) + λ[w(h− l) + π − T − C] + µ(h− l)

where λ and µ are the Lagrange multipliers.
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Solving the problem

• We assume that there is an interior solution to the
consumer’s problem where C > 0 and 0 < l.

• This can be guaranteed by assuming that

UC(0, l) = ∞ and Ul(C, 0) = ∞

• The first-order conditions are

UC(C, l)− λ = 0

Ul(C, l)− λw − µ = 0

w(h− l) + π − T − C = 0.

• Slackness conditions:

µ ≥ 0 h− l ≥ 0 µ(h− l) = 0
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Case 1: l = h (consumer does not work!)

• For this case to be feasible, we require that C = π− T > 0.
• From the first two FOCs and nonnegativity of multiplier:

Ul(π − T, h)− wUC(π − T, h) = µ ≥ 0

⇔ w ≤ Ul(π − T, h)

UC(π − T, h)

• Thus, consumer does not work if he
has π − T > 0, and at bundle
(π − T, h) the market wage rate is
less than his MRS of leisure for
consumption.

• In a competitive equilibrium we
cannot have l = h, as this would
imply that nothing would be
produced and C = 0.
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Case 2: µ = 0 (consumer goes to work!)

• From the first two FOCs:

Ul(C
∗, l∗) = wUC(C

∗, l∗)

⇔ w =
Ul(C

∗, l∗)

UC(C∗, l∗)

• Thus, consumer works
Ns∗ = h− l∗ hours and
consumes
C∗ = w(h− l∗) + π − T .

• At this allocation, his MRS of
leisure for consumption
equals the market wage rate.
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A parametric example

U(C, l) = ln(c) + γ ln(l)

• FOC
MRSlC =

Ul

UC
=

γ
l
1
C

=
γC

l
= w

• Time and budget constraints:

w =
γC

h−N s

C = wN s + π − T

• Then
N s∗ =

wh− γ(π − T )

(1 + γ)w
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Real Dividends or Taxes Change for the Consumer

• Assume that consumption
and leisure are both normal
goods.

• An increase in dividends or a
decrease in taxes will then
cause the consumer to
increase consumption and
reduce the quantity of labor
supplied (increase leisure).

10



An Increase in the Market Real Wage Rate

• This has income and substitution effects.
• Substitution effect: the price of leisure rises, so the
consumer substitutes from leisure to consumption.

• Income effect: the consumer is effectively more wealthy
and, since both goods are normal, consumption increases
and leisure increases.

• Conclusion: Consumption must rise, but leisure may rise
or fall.
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Increase in the Real Wage Rate–Income and Substitution Effects
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The labor supply function

• Suppose l(w) is a function that tells us how much leisure
the consumer wishes to consume, given the real wage w.

• Then, the labor supply curve is given by

N s(w) = h− l(w)

• We do not know whether labor supply is increasing or
decreasing in the real wage, because the effect of a wage
increase on the consumer’s leisure choice is ambiguous.

• Assuming that the substitution effect is larger than the
income effect of a change in the real wage, labor supply
increases with an increase in the real wage, and the labor
supply schedule is upward-sloping.
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The slope of the labor supply function

• We do not know whether
labor supply is increasing or
decreasing in the real wage,
because the effect of a wage
increase on the consumer’s
leisure choice is ambiguous.

• Assuming that the
substitution effect is larger
than the income effect of a
change in the real wage,
labor supply increases with
an increase in the real wage,
and the labor supply
schedule is upward-sloping.
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Labor supply response to an increase in dividend

• An increase in nonwage disposable income shifts the
labor supply curve to the left, that is, from N s to N s

1 ,
because leisure is a normal good
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The Work-Leisure Decision:
Comparative statics in leisure-consumption

model



The economist’s problem

• You have a model with n endogenous variables y and m

exogenous variables x, whose solution is described by
y = Ψ(x).

• You have found n model conditions of the form
g(x,y) = 0.

• Problem: How to analyze the comparative statics of the
model without an explicit formula for Ψ(x)?

• Solution: compute the total derivative of g, using the
chain rule.
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Side note: The gradient and the Hessian matrix

Let f be a function, f : Rn → R, where x =
(
x1 · · · xn

)′
. We

denote the first partial derivatives of f(x) by

fi(x) =
∂f(x)

∂xi
and ∇f(x) =

 f1(x)
...

fn(x)


and the Hessian matrix of f(x) by

H(x) =


f11(x) f12(x) . . . f1n(x)

f21(x) f22(x) . . . f2n(x)
...

... . . . ...
fn1(x) fn2(x) . . . fnn(x)
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Side note: The Jacobian

Let f be a function, f : Rn → Rm:

f(x) =

 f
1(x)
...

fm(x)


We denote the Jacobian of f(x) by

J(x) =


f1
1 (x) f1

2 (x) . . . f1
n(x)

f2
1 (x) f2

2 (x) . . . f2
n(x)

...
... . . . ...

fm
1 (x) fm

2 (x) . . . fm
n (x)

 =


∇f1(x)′

∇f2(x)′

...
∇fm(x)′
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Side note: A partitioned Jacobian

• Let g(x,y) be a function of vectors x ∈ Rm and y ∈ Rn,
such that g : Rn+m → Rn.

• Think of g as a system of n nonlinear equations on n

endogenous variables y and m exogenous variables x.
• The partial Jacobians Dgy and Dgx form a partition of the
Jacobian:

J(x,y) = [Dgx |Dgy] =


g1y1 g1y2 . . . g1yn
g2y1 g2y2 . . . g2yn
...

... . . . ...
gny1 gny2 . . . gnyn

g1x1
g1x2

. . . g1xm

g2x1
g2x2

. . . g2xm

...
... . . . ...

gnx1
gnx2

. . . gnxm
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Side note: The total derivative

• The total derivative of g(x,y) satisfies
n∑

i=1

∂gk

∂yi
dyi +

m∑
i=1

∂gk

∂xi
dxi = 0, ∀k = 1, . . . , n

• This can be written in terms of the partitioned Jacobian:

0 =


g1y1 g1y2 . . . g1yn
g2y1 g2y2 . . . g2yn
...

... . . . ...
gny1 gny2 . . . gnyn



dy1

dy2
...

dyn

+


g1x1

g1x2
. . . g1xm

g2x1
g2x2

. . . g2xm

...
... . . . ...

gnx1
gnx2

. . . gnxm



dx1

dx2
...

dxm



= Dgy dy+Dgy dx

• Then dy = [Dgy]
−1Dgx dx, assuming inverse is defined.
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Comparative statics in leisure-consumption model

In our leisure-consumption model, the solution required that:

g1(c, l, w, π) = Ul − wUc = 0

g2(c, l, w, π) = c− wh+ wl − π = 0

Therefore

0 =

[
g1c g1l
g2c g2l

][
dc

dl

]
+

[
g1w g1π
g2w g2π

][
dw

dπ

]

=

[
Ulc − wUcc Ull − wUcl

1 w

][
dc

dl

]
+

[
−Uc 0

l − h −1

][
dw

dπ

]
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[
dc

dl

]
=

[
Ulc − wUcc Ull − wUcl

1 w

]−1 [
Uc 0

h− l 1

][
dw

dπ

]

=
1

∇

[
w wUcl − Ull

−1 Ulc − wUcc

][
Uc 0

h− l 1

][
dw

dπ

]

=
1

∇

[
wUc + (h− l)(wUcl − Ull) wUcl − Ull

−Uc + (h− l)(Ulc − wUcc) Ulc − wUcc

][
dw

dπ

]

where

∇ = −
(
w2Ucc − 2wUcl + Ull

)
= −

∣∣∣∣∣∣∣
0 1 w

1 Ucc Ucl

w Ulc Ull

∣∣∣∣∣∣∣ ≥ 0
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The comparative statics follows from:

dc

dπ
=

wUcl − Ull

∇
> 0 (c is normal)

dc

dw
=

wUc + (h− l)(wUcl − Ull)

∇
> 0

dl

dπ
=

Ulc − wUcc

∇
> 0 (l is normal)

dl

dw
=

−Uc + (h− l)(Ulc − wUcc)

∇
? 0
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Choice under uncertainty



Choice under uncertainty

• Until now, we have been concerned with the behavior of a
consumer under conditions of certainty.

• However, many choices made by consumers take place
under conditions of uncertainty.

• In this section we explore how the theory of consumer
choice can be used to describe such behavior.

24



The choices

• The first question to ask is what is the basic “thing” that is
being chosen?

• The consumer is presumably concerned with the
probability distribution of getting different consumption
bundles of goods.

• A probability distribution consists of a list of different
outcomes—in this case, consumption bundles—and the
probability associated with each outcome.

• When a consumer decides how much automobile
insurance to buy or how much to invest in the stock
market, he is in effect deciding on a pattern of probability
distribution across different amounts of consumption.
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Contingent consumption

• Let us think of the different outcomes of some random
event as being different states of nature.

• A contingent consumption plan is a specification of what
will be consumed in each different state of nature.

• Contingent means depending on something not yet
certain.

• People have preferences over different plans of
consumption, just like they have preferences over actual
consumption.

• We can think of preferences as being defined over
different consumption plans.
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Utility functions and probabilities

• If the consumer has reasonable preferences about
consumption in different circumstances, then we can use
a utility function to describe these preferences.

• However, uncertainty does add a special structure to the
choice problem.

• How a person values consumption in one state as
compared to another will depend on the probability that
the state in question will actually occur.

• For this reason, we will write the utility function as
depending on the probabilities as well as on the
consumption levels.
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Utility with discrete random outcomes

• If there are n possible states of nature s, then c is a
discrete random variable with support {c1, . . . , cn}, whose
values are realized with probabilities {p1, . . . , pn}.

s P c u(c)

1 π1 c1 u(c1)

2 π2 c2 u(c2)
...

...
n πn cn u(vn)

• Utility is

U(c1, . . . , cn;π1, . . . , πn) =

n∑
i=1

πiu(ci)
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Utility with continuous random outcomes

• If there are infinite states of nature, we think of c as a
continuous random variable.

• If c has support C, pdf f(c) and cdf F (c), then utility is

U(c, f) =

∫
c
f(c)u(c) dc

=

∫
c
u(c) dF (c)
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von Neumann-Morgenstern utility

• We refer to a utility function U with the particular form
described here as an expected utility function, or,
sometimes, a von Neumann-Morgenstern utility function:

U(c,P) ≡ Eu(c) =

{∑n
i=1 πiu(ci) discrete∫

c u(c) dF (c) continuous

• We refer to u(c) as the Bernoulli utility function.
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Choice under uncertainty:
Demand for insurance



Growing potatoes in uncertain weather

• A farmer grows potatoes for own consumption.
• The weather s can be good or bad, affecting the amount
of potatoes (real income y) he actually harvests:

s (weather) P y

g (good) πg W

b (bad) πb W − L

• That is, if weather is bad, he loses L potatoes.
• Expected consumption of potatoes:

E c = E y = (1− πb)W + πb(W − L) = W − πbL
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An insurance contract

• Farmer can insure K potatoes, premium is γ per unit.
• Choices are contingent consumption plans:

s P y insure c

g πg W −γK W − γK

b πb W−L (1− γ)K W−γK+K−L
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Expected utility of buying insurance coverage K

• Expected utility is

U(cg, cb;πg, πb) ≡ Eu(c)

= πgu(cg) + πbu(cb)

= πgu(W − γK) + πbu(W − γK +K − L)

• MRS of bad-weather potatoes for one good-weather
potato is

MRSbg =
Ucb

Ucg

=
πbu

′(cb)

πgu′(cg)
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Objective function: Eu(c) = U(cg, cb, πg, πb) = πgu(cg) + πbu(cb)

W− L

W

consumption in bad state

co
ns
um

pt
io
n
in

go
od

st
at
e
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Budget constraint (cg, cb) = (yg − γK, yb + (1− γ)K)

• We have
K =

yg − cg
γ

=
cb − yb
1− γ

• Therefore
cg +

γ
1−γ cb = yg +

γ
1−γ yb

• Substitute yg = W and yb = W − L to get

cg +
γ

1−γ cb = W + γ
1−γ (W − L)

= 1
1−γW − γ

1−γL

• The relative price (in terms of potatoes in good weather)
of a potato in bad weather is p = γ

1−γ
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Budget constraint:

cg +
γ

1−γ cb =
1

1−γW − γ
1−γL

W− L W− γL

W

W− γL

K = 0

K = L

consumption in bad state

co
ns
um

pt
io
n
in

go
od

st
at
e
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Optimality condition:

MRSbg =
πbu

′(cb)

πgu′(cg)
=

γ

1− γ
= p

W− L W− πL

W

W− πL

A

B

consumption in bad state

co
ns
um

pt
io
n
in

go
od

st
at
e
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Demand for insurance

• Of course, we could also solve for optimal K directly:

max
K

{πgu(W − γK) + πbu(W − L− γK +K)}

• FOC:

0 = −γπgu
′(W − γK) + (1− γ)πbu

′(W − L− γK +K)

⇔ πbu
′(W − L− γK +K)

πgu′(W − γK)
=

γ

1− γ
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Risk of losses and price of insurance

• The market price of insurance should satisfy γ ≥ πb, so
the insurer gets enough revenue γK to cover expected
payments πbK . This implies that:

γ ≥ πb

1− πb ≥ 1− γ

γ(1− πb) ≥ πb(1− γ)

1 ≥ πb(1− γ)

γ(1− πb)
=

u′(cg)

u′(cb)
(from FOC)

u′(cb) ≥ u′(cg)

cb ≤ cg (assuming risk aversion)

• Consumer gets full insurance iif it’s actuarially fair.
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Case γ = πb: actuarially fair insurance

W− L W− πL

W

W− πL

A

B

consumption in bad state

co
ns
um

pt
io
n
in

go
od

st
at
e

� K∗ = L: full insurance
� farmer consumes W − πbL,
regardless of weather.
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Case γ > πb: insurer expects a profit

W− L W− L+ (1− γ)K W− πL

W

W− γK
W− πL

A

BC

consumption in bad state

co
ns
um

pt
io
n
in

go
od

st
at
e

� K∗ < L: no full insurance
� farmer still faces (lower)
risk.
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Increasing the premium: As insurance gets expensive,
consumer buys less coverage.

0 K2K1 K0 = L

u(Ew)

Eγ1u(w)

Eγ2u(w)

u(W− πL)

A

B

C

D

coverage

ex
pe

ct
ed

ut
ili
ty

γ0 = 1.00π
γ1 = 1.25π
γ2 = 1.50π

;
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Example 1:

Logarithmic utility



Let’s now assume that u(c) = ln(c) From the FOC:

γπgu
′(W − γK) = (1− γ)πbu

′(W − L+ (1− γ)K)

γπg[W − L+ (1− γ)K] = (1− γ)πb(W − γK)

πgγ(W − L) + πgγ(1− γ)K = πb(1− γ)W − πbγ(1− γ)K

(πb + πg)(1− γ)γK = (πb − γ(πb + πg))W + γπgL

γ(1− γ)K = (πb − γ)W + γ(1− πb)L

K∗ =
1− πb
1− γ

L− γ − πb
γ(1− γ)

W
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Optimal contingent consumption plans:

s P y c∗

g πg W 1−πb
1−γ (W − γL)

b πb W − L πb
γ (W − γL)
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Choice under uncertainty:
Risk aversion



A risk averse consumer

W− L CE E W̃ W

u(W− L)

E u(W̃)

u(E W̃)

u(W)

A

B

C

DE

wealth

ut
ili
ty

;
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A risk loving consumer

W− L E W̃ CE W

u(W− L)

E u(W̃)

u(E W̃)

u(W)

A

B

C
D

wealth

ut
ili
ty

;
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Measuring risk aversion

• A consumer with a von Neumann-Morgenstern utility
function can be one of the following:

• Risk-averse, with a concave utility function;
• Risk-neutral, with a linear utility function, or;
• Risk-loving, with a convex utility function.

• Then, the degree of risk-aversion a consumer displays
would be related to the curvature of their Bernoulli utility
function u(W ).

• The more ”curved” a concave u(W ) is, the lower will be a
consumer’s certainty equivalent, and the higher their risk
premium.

• How do we measure the curvature of a function?
• Simple - using the function’s second derivative.
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Arrow-Pratt measure of risk aversion

Absolute Relative

−u′′(W )

u′(W )

−u′′(W )w

u′(W )

CARA CRRA

u(c) = −e−ρc u(c) =
c1−σ − 1

1− σ
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A change in risk aversion

W− L CEo CE E W̃ W

uo(W− L)

u(W− L)E uo(W̃)

E u(W̃)

u(W)

A

B

CD

E

FG

wealth

ut
ili
ty
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Choice under uncertainty:
A risky asset



A risky asset

• Consider a simple two-period portfolio problem involving
two assets, one with a risky (gross) return R̃ ≥ 0 and one
with a sure (gross) return Rf ≥ 1.

• Let w be initial wealth, and let x ∈ [0, 1] be the share of
wealth invested in the risky asset.

s P risky risk-free c

R̃ = R f(R) xw (1−x)w [(1−x)Rf+xR]w

• In this case the second-period wealth can be written as

W̃ = (1− x)Rfw + xR̃w

= [(1− x)Rf + xR̃]w

• Note that W̃ is a random variable since R̃ is random.
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Expected utility

• The expected utility from investing x in the risky asset:

v(x) = Eu(c) = Eu
(
[(1− x)Rf + xR̃]w

)
• The portfolio problem is then to choose x ∈ [0, 1] to
maximize v(x):

L(x, µ, λ) = Eu
(
[(1− x)Rf + xR̃]w

)
+ µx+ λ(1− x)

• Conditions:

E
{
u′(W̃ )(R̃−Rf )w

}
+ µ− λ = 0

µ ≥ 0 x ≥ 0 µx = 0

λ ≥ 0 x ≤ 1 λ(1− x) = 0
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Second order condition

• Notice that second derivative is

E
{
u′(W̃ )(R̃−Rf )

2w2
}
< 0 iif u′(W̃ ) < 0

• SOC requires that consumer is risk-averse.

52



Slackness conditions

• The slackness conditions (SC) imply:
• if x = 0, 2nd group of SC satisfied with λ = 0.

• if x = 1, 1st group of SC satisfied with µ = 0.

• if 0 < x < 1, both groups of SC satisfied with λ = µ = 0.

• Then, we only need to analyze 3 cases:
• x = 0 ⇒ E

{
u′(W̃ )(R̃−Rf )

}
= −µ ≤ 0

• x = 1 ⇒ E
{
u′(W̃ )(R̃−Rf )

}
= λ ≥ 0

• 0 < x < 1 ⇒ E
{
u′(W̃ )(R̃−Rf )

}
= 0
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Case 1: x = 0 ⇒ W̃ = wRf

E
{
u′(W̃ )(R̃−Rf )

}
≤ 0

E
{
u′(W̃ )R̃

}
≤ E

{
u′(W̃ )Rf

}
E
{
u′(wRf )R̃

}
≤ E

{
u′(wRf )Rf

}
u′(wRf )E

{
R̃
}
≤ u′(wRf )Rf

E
{
R̃
}
≤ Rf

Consumer does not invest in risky asset if its return is lower
than the risk-free return.
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Case 2: x = 1 ⇒ W̃ = wR̃

E
{
u′(W̃ )(R̃−Rf )

}
≥ 0

E
{
u′(W̃ )R̃

}
≥ E

{
u′(W̃ )Rf

}
E
{
u′(wR̃)R̃

}
≥ E

{
u′(wR̃)Rf

}
Rf ≤

E
{
u′(wR̃)R̃

}
E
{
u′(wR̃)

}
Consumer does not invest in risk-free asset if its return is ”too
low”. We need more details about the R̃ process and utility u
to determine what ”too low” is.
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Case 3: 0 < x < 1

0 = E
{
u′(W̃ )(R̃−Rf )

}
= Cov

[
u′(W̃ ), R̃−Rf

]
+ E

[
u′(W̃ )

]
E
[
R̃−Rf

]
Then

E R̃−Rf =
−Cov

[
u′(W̃ ), R̃

]
Eu′(W̃ )

> 0
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Example 2:

”Investing” in ”Tiempos”



• In ”Tiempos” lottery, you pick one number out of 100, all
of them with equal probability (1%) of winning.

• In winning state, your gross return is R̃ = 72.
• If losing state, your gross return is R̃ = 0.
• If you don’t play, you keep your money (Rf = 1).
• Expected return on lottery is

E R̃ = 0.99× 0 + 0.01× 72 = 0.7128 < 1 = Rf

• Therefore, a risk-averse consumer would never play
”Tiempos”.
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Intertemporal consumption



Adding a time dimension

• So far we have only studied static choices.
• Life is full of intertemporal choices: Should I study for my
test today or tomorrow? Should I save or should I
consume now?

• We will present a simple model: the Life-Cycle/Permanent
Income Model of Consumption.

• Developed by Modigliani (Nobel winner 1985) and
Friedman (Nobel winner 1976).

• Will allow us to address several key issues: effects of
government programs including Social Security,
government debts and deficits.
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The model

• Representative household lives 2 periods.
• Utility function:

U(c0, c1) = u(c0) + βu(c1)

• c0 is consumption in first (current) period of life,
• c1 is consumption in second (future) period of life,
• 0 < β < 1 measures household’s degree of impatience.

• Preferences over c0, c1 satisfy monotonicity (u′ > 0) and
convexity (u′′ < 0).
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More on preferences

U(c0, c1) = u(c0) + βu(c1)

• Consumption smoothing motive, partially offset by
discounting.

• Assume c0 and c1 are normal: more income ⇒ more of
both.

• Intertemporal marginal rate of substitution measures
willingness to substitute consumption over time:

MRSc0,c1 =
Uc0(c0, c1)

Uc1(c0, c1)
=

u′(c0)

βu′(c1)
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U(c0, c1) = u(c0) + βu(c1)
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y1

(1+ r)W

current consumption

fu
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n
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Budget constraint I

• Abstract from labor/lesiure tradeoff.
• (Labor) income yt ≥ 0 in period t = 0, 1.
• Initial wealth a0 ≥ 0.
• Consumer can save part of income or initial wealth in the
first period, or it can borrow against future income y1.

• Interest rate on both savings and on loans is equal to r.
Gross interest rate R ≡ 1 + r

• Let st = yt − ct denote saving.
• Budget constraint in first period:

a1 = R(a0 + s0)

• Budget constraint in second period:

a2 = R(a1 + s1) = 0
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Budget constraint (II)

• Combining both constraints:

R(a0 + s0) + s1 = 0 ⇒ −s0 −
s1
R

= a0

• Substitute st = yt − ct

c0 +
c1
R

= y0 +
y1
R

+ a0 = H + a0 ≡ W (PVBC)

• We have normalized the price of the consumption good in
the first period to 1.

• Gross interest rate R ≡ 1 + r is the relative price of
consumption goods today to consumption goods
tomorrow.

• Called the present value budget constraint (PVBC).
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c0 +
c1
R

= W

y0 W

y1

(1+ r)W

current consumption
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The consumer’s problem

max
c0,c1

{u(c0) + βu(c1)} c0 +
c1
R

= W

• Form Lagrangian with multiplier λ ≥ 0

L(c0, c1, λ) = u(c0) + βu(c1) + λ
(
W − c0 −

c1
R

)
• FOCs:

u′(c0) = λ

βu′(c1) =
λ

R

• Combine to get

Euler equation u′(c0) = βRu′(c1)
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u′(c0) = βRu′(c1)

Consumer is a lender Consumer is a borrower

c∗0 y0 W
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Implications of the Euler equation

u′(c0) = βRu′(c1)

• Can also be written

MRSc0,c1 = 1 + r

• Recall that u is concave, so u′′ < 0 ⇒ u′(c) is decreasing.
So if:

• β(1 + r) > 1 ⇒ u′(c0) > u′(c1) ⇒ c0 < c1
• β(1 + r) < 1 ⇒ u′(c0) < u′(c1) ⇒ c0 > c1
• β(1 + r) = 1 ⇒ u′(c0) = u′(c1) ⇒ c0 = c1

• Behavior of consumption over time depends on rate of
time preference relative to interest rate.

• If equal, perfect consumption smoothing.
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Example 3:

Logarithmic utility



u(c) = ln(c)

• Euler equation:

1

c0
=

βR

c1
⇒ c1 = βRc0

• Using the PVBC

c0 = W − c1
R

= W − βc0

• So that

c0 =
1

1+βW s0 =
1

1+β

(
βy0 − a0 −

y1
R

)
c1 =

βR
1+βW a1 =

1
1+β [βR(y0 + a0)− y1]
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• Value function:

V (W, r) = (1 + β) lnW + β lnR+ β lnβ − (1 + β) ln(1 + β)

• Increasing wealth W , regardless of source, increases
consumer utility:

∂V

∂W
=

1 + β

W

• Effect of a change in interest rate r depends on wealth
composition, which in turn determines whether the
consumer has positive or negative assets a1 at the end of
period 1:

∂V

∂r
=

1

R2W
[βR(y0 + a0)− y1]

=
1 + β

R2W
a1
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Example 4:

CRRA utility



• The logarithmic utility from last example is just a special
case of the constant relative risk aversion(CRRA) utility,
when σ = 1.

u(c) =
c1−σ − 1

1− σ

• With CRRA utility, the Bellman equation becomes

c−σ
0 = βRc−σ

1 ⇒ c1 = (βR)1/σc0

• Use budget constraint c0 + c1
R = W to solve for c0 and c1:

c0 =
R

R+ (βR)1/σ
W c1 =

R(βR)1/σ

R+ (βR)1/σ
W
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Increasing wealth

c∗0 c∗0
′ y0 y′0W W′

c∗1

c∗1
′
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Increasing interest rate: lender

c∗0c∗0
′ y0 WW′

c∗1

c∗1
′

y1

(1+ r)W

(1+ r)W′

current consumption

fu
tu
re

co
ns

um
pt
io
n

72



Increasing interest rate: borrower

c∗0c∗0
′y0 WW′

c∗1
c∗1

′

y1

(1+ r)W

(1+ r)W′

current consumption

fu
tu
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Intertemporal consumption:
Many goods, two time periods



The model

• A consumer lives two periods, and chooses among n+ 1

goods in each period: xit for i ∈ {0, 1, . . . , n} and t ∈ {0, 1}.
• Utility function depends on 2n+ 2 goods:

U =
(α0x

ρ
00 + · · ·+ αnx

ρ
n0)

1−γ
ρ

1− γ
+β

(α0x
ρ
01 + · · ·+ αnx

ρ
n1)

1−γ
ρ

1− γ

• Let xt be the bundle of goods consumed at time t:

xt = [x0t, x1t, . . . , xnt]

74



Constraints in nominal terms

• Consumer can save and borrow money at nominal interest
rate i.

• The budget constraint says that the present value of all
consumption purchases must equal the present value of
nominal income Yt:

n∑
k=0

pk0xk0 +
1

1 + i

n∑
k=0

pk1xk1 = Y0 +
Y1

1 + i

• Let Ct =
∑n

k=0 pktxkt be nominal consumption at time t.
• Budget constraint becomes

C0 +
C1

1 + i
= Y0 +

Y1
1 + i

≡ W

where W is nominal wealth.
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Constraints in real terms

• Let Pt = (ασ
0p

1−σ
0t + · · ·+ ασ

np
1−σ
nt )

1
1−σ be the price index at

time t

• Notice that P1
P0(1+i) =

1+π
1+i = 1

1+r , where π is the inflation
rate, and r the real interest rate.

• Divide budget constraint by price index P0

C0

P0
+

P1

P0(1 + i)

C1

P1
=

Y0
P0

+
P1

P0(1 + i)

Y1
P1

=
W

P0

c0 +
c1

1 + r
= y0 +

y1
1 + r

= w

where ct is real consumption, yt is real income, and w is
real wealth.

• Constraint says that present value of real (composite)
consumption equals the present value of real income.
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Solving the problem: 2 steps

• Let Ũ denote CES function: Ũ(xt) = (α0x
ρ
0t + · · ·+ αnx

ρ
nt)

1
ρ

• Utility becomes:

U =
Ũ(x0)

1−γ

1− γ
+ β

Ũ(x1)
1−γ

1− γ

• Consumer has to choose 2n+ 2 variables, subject to 1
budget constraint.

• To solve this problem, consumer makes decisions in two
stages

• Intra-temporal stage: Given all prices and the total amount
to spend in each period, consumer chooses goods for each
period separately.

• Inter-temporal stage: Taking the intra-temporal solution as
given, solve the inter-temporal problem:
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Intra-temporal stage

• Given all prices and the total amount to spend in each
period, consumer chooses goods for each period
separately.

• Since intra-temporal preferences are CES, we know that if
consumer spends Ct dollars and price level is Pt, the
optimal utility he can get is

Ṽ (Ct, Pt) ≡ max
xt

Ũ(xt) =
Ct

Pt
= ct
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Inter-temporal stage

• Taking the intra-temporal solution as given, problem
becomes:

max
c0,c1

c1−γ
0

1− γ
+ β

u1−γ
1

1− γ
s.t c0 +

c1
R

= w

• But this is equivalent to what we solved in previous
section. Its solution is characterized by the Euler equation

c−γ
0 = βRc−γ

1 ⇒ c1 = (βR)1/γc0

• Solution is

c0 =
R

R+ (βR)1/γ
w c1 =

R(βR)1/γ

R+ (βR)1/γ
w

79



Marshallian demands for the goods

• Demands for each of the goods in then:

xkt =

(
αk
pkt
Pt

)
ct

=

(
αk
pkt
Pt

)
R(βR)t/γ

R+ (βR)1/γ
w

• Notice that demand for goods depends only on
preference parameters (αk) and real variables (wealth w,
interest rates r, relative prices pkt/Pt)
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Modeling implications

• If utility is time-separable, we can split the problem of
choosing n goods over T periods into n+ 1 problems:

• decide how much to spend in each of the T periods
(inter-temporal allocation); and

• take each period budget and decide how to spend it into
the n goods (intra-temporal allocation)

• If intra-temporal preference is CES, we can interpret the
indirect utilities of the intra-temporal allocations as real
composite consumption good.

• From now on, in our macro models we will analyze
dynamic consumption behavior assuming that there exist
such real composite consumption good.

• We will simply call it the consumption good.
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Intertemporal consumption with
uncertainty



Intertemporal consumption with uncertainty

• Representative consumer lives 2 periods.
• She can save and borrow at interest rate r.
• Her initial asset is a0.
• She doesn’t leave any debt or inheritance (a2 = 0).
• Her income yt ≥ 0 in period t = 0, 1:

• y0 is known at time of deciding c0.

• ỹ1 is uncertain. It takes value y1s with probability πs,
depending on the state of nature s = 1, . . . , S.

• Notice that
∑S

s=1 πs = 1.
• Her expected future income is then

E ỹ1 =

S∑
s=1

πsy1s
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Budget constraint

• Budget constraints:

a1 = R(a0 + y0 − c0)

a2 = R(a1 + ỹ1 − c̃1) = 0

• a0 and y0 are certain (she already have them in her bank).
• c0 and a1 are certain (she nows what she is choosing now).
• c1 is uncertain because she needs to adjust future
consumption to income shocks:

c̃1 = a1 + ỹ1 ⇒
E c̃1 = a1 + E ỹ1 ⇒
c̃1 = E c̃1 + ỹ1 − E ỹ1︸ ︷︷ ︸

forecast error
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Consumption plans, contingent on income

State P Period 0 Period 1

s πs c0 = a0 + y0 − a1
R c1s = a1 + y1s

84



Example 5:

Only two states of nature



State Probability Period 0 Period 1

L πL c0 = a0+y0− a1
R cL1 = a1 + yL1

H πH c0 = a0+y0− a1
R cH1 = a1 + yH1

Consumer wants to maximize her discounted expected utility:

U(c0, c
L
1 , c

H
1 , πL, πH) = Eỹ2 [u(c0) + βu(c1)]

= πL
[
u(c0) + βu(cL1 )

]
+ πH

[
u(c0) + βu(cH1 )

]
= (πL + πH)u(c0) + β

[
πLu(c

L
1 ) + πHu(cH1 )

]
= u(c0) + β Eu(c1)
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U = {u(c0) + β Eu(c1)}

=
{
u(c0) + β

[
πLu(c

L
1 ) + πHu(cH1 )

]}
=
{
u
(
a0 + y0 − a1

R

)
+ β

[
πLu

(
a1 + yL1

)
+ πHu

(
a1 + yH1

)]}
Objective now depends on a1 alone. Take FOC:

0 = − 1
Ru

′ (c0) + βπLu
′(cL1 ) + βπHu′(cH1 )

u′ (c0) = βR
[
πLu

′(cL1 ) + πHu′(cH1 )
]

= βRE
[
u′(c1)

]
(Euler equation)
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Wealth and permanent income

• Combining the budget constraints she gets

c0 +
c̃1
R

= a0 + y0 +
ỹ1
R︸ ︷︷ ︸

wealth W̃0

(for any possible state of nature)

• Her wealth at time 0 is uncertain because future income is
random. But she can form an expectation:

c0 +
E c̃1
R

= a0 + y0 +
E ỹ1
R

= E W̃0

• Her permanent income yp is the constant level of
consumption that she expects to be able to afford, given
her expected wealth. Then

yp =
R

1 +R
E W̃
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The consumer’s problem

• She wants to maximize her discounted expected utility
(von Neumann-Morgenstern):

U
(
c0, {c1s;πs}Ss=1

)
= Eỹ2 [u(c0) + βu(c1)]

= u(c0) + β Eu(c1)

• subject to contingent plans

c0 +
c1s
R

= a0 + y0 +
y1s
R

≡ Ws (for s = 1, . . . , S)

• There are S constraints (one per state of nature).
• Let λsπs be the Lagrange multiplier associated with the sth

constraint.
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Solving the problem

• The Lagrangian is

L = u(c0) + β Eu(c1) +
∑

s
λsπs

(
Ws − cs −

c1s
R

)
= u(c0) +

∑
s
πs

[
βu(c1s) + λs

(
Ws − cs −

c1s
R

)]
• FOCs:

(wrt c0) 0 = u′(c0)−
∑

s
πsλs ⇒ u′(c0) = Eλ

(wrt c1s) 0 = πs

[
βu′(c1s)−

λs

R

]
⇒ πsβRu′ (c1s) = πsλs
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The Euler equation

• Adding up the FOCs wrt c1s, we get∑
s
πsβRu′ (c1s) =

∑
s
πsλs

βREu′ (c1) = Eλ

• Substituting Eλ from the first FOC to get

Euler equation u′(c0) = βREu′ (c1)
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Side note: Some math worth remembering

• Let u and v be functions, X and Z random variables, and
a and b scalars.

• Suppose that X and Z depend on parameter t.
• Then, under fairly general conditions:

E [au(X) + bv(Z)] = aEu(X) + bE v(Z)

∂ Eu(X)

∂t
= E

[
u′(X)

∂X

∂t

]
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A faster way to get the Euler equation

• Instead of having one constraint for each state of nature,
just write one: the expected values of the constraint:

c0 +
E c̃1
R

= E W̃0

• Just keep in mind that this is a shortcut: the budget
constraint must be satisfied in every state of nature, not
only in expected values.

• Besides, the consumer is choosing future consumption
contingent on each state of nature. She is not just
choosing her expected future consumption.
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Solving the problem

• Lagrangian is

L = u′(c0) + β Eu(c1) + λ

(
E W̃ − c0 −

E c1
R

)
• FOCs

(wrt c0) 0 = u′(c0)− λ ⇒ u′(c0) = λ

(wrt c1) 0 = β Eu′(c1)−
λ

R
⇒ βREu′ (c1) = λ
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Euler equation, again

• Then, from the two FOCs

u′(c0) = βREu′ (c1) (Euler equation)

• Euler equation can be written as:

u′(c0)

β Eu′(c1)
= R

MRS of present
consumption for future

consumption

price of present
consumption in terms
of future consumption
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Example 6:

Hall 1978



• Assume that utility is quadratic u(c) = αc− 0.5c2 and that
βR = 1.

• Euler equation is:
E c1 = c0

• This means that consumption would follow a random walk.
• In such case, under the pure life cycle-permanent income
hypothesis, a forecast of future consumption obtained by
extrapolating today’s level by the historical trend is
impossible to improve.
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Example 7:

CRRA utility, with uncertainty



• Now assume that consumer has constant relative risk
aversion: u(c) = c1−σ

1−σ , with σ > 0.
• Euler equation is:

c−σ
0 = βRE

(
c−σ
1

)
• But notice that E

(
c−σ
1

)
̸= (E c1)

−σ , so we can not simply
use budget constraint

c0 +
E c̃1
R

= E W̃0

to solve for c0 and E c1.
• So, in dynamic models with uncertainty, it is often
necessary to use numerical methods to analyze the
solution of the model.
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