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Introduction

- Markov processes are an indispensable ingredient of DSGE
models.

- They preserve the recursive structure that these models
inherit from their deterministic relatives.

- In this lecture we review a few results about these
processes that we will need repeatedly in the modeling of
business cycles.



Stochastic process



Stochastic Process

A stochastic process is a time sequence of random variables
{Yi}2

Two types of processes:
Continuous if realizations are taken from an interval of the
real line Y; € [a,b] C R.
Discrete if there is a countable number of realizations
}/t 6 {?/17y27 ©oo0 7yn}



i.i.d. Stochastic Process

- The elements of a stochastic process are identically and
independently distributed (iid for short), if the probability
distribution is the same for each member of the process
Z; and independent of the realizations of other members
of the process.

+ In this case

P[Yl:ylaY2:y27"'7YT:yT]:
P(Yi =y1) x P(Ya =y2) x --- x P(Y7 = yr)



Unconditional moments

- Unconditional cumulative distribution function
Fy, (y) =P[Y; <y

- Unconditional expectation (mean)

utEE(Yt)Z/ y dFy, (y)
- Unconditional variance
o =B - = [ (- ) 4By )

- Autocovariance

Vit = E (Vs — pe) (Yiej — pe—j)



Stationarity

If neither the mean y; nor the autocovariances ;; depend on
the date ¢, then the process for Z; is said to be
covariance-stationary or weakly stationary:

E(Y;) =up forallt
E(Y: —p) (Yi—j — 1) =75 forall t and any j



- The basic building block for the processes considered in
this lecture is a sequence {e} whose elements have mean
zero and variance o2,

E(e) =0 (zero mean)
E(]) = o? (constant variance)
E(ee;) =0 fort#r (uncorrelated terms)

- If the terms are normally distributed
e ~ N(0,0?)

the we have the Gaussian white noise process.



The first-order autoregressive
process



Definition of a AR(1) process

- Afirst-order autoregression, denoted AR(1), satisfies the
following difference equation:

Yi=c+oYi1+e

where {¢} is a white noise sequence.
- It is stationary if and only if |¢| < 1.

- In what follows, we assume the process is stationary.



MA(co) representation of a AR(1) process

- If the AR(1) process is stationary, it can be written

C
Y, = - + et + per—1 + Prer—2 + PR3 + ...



Conditional versus unconditional mean

- The conditional mean given the previous observation is
E[Y:|Yi1] = c+ ¢Yi

- The unconditional mean is
©

1-9¢

- Since ¢ = (1 — ¢)u, the AR(1) process can be written as
deviations from ‘equilibrium’

p=E[Y] =

Yi—p=¢Yi—1—p) +e



Impulse-response

- Starting with Y;_1, the value of Y4, will be

Vigs—p = ¢*TH(Vim1—p)+o°e+0" Leri1+ -+ ders—1+Herts

- Suppose that starting in ‘equilibrium’ (Y;—; — p = 0) there
is a time-t transitory shock (e; = v) but no more shocks
thereafter (e;41 = --- = €45 = 0). Then

Yits —p=9¢°v

- This is known as an impulse-response function.

- Notice that the process will return to equilibrium as long
as || < 1.
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Conditional versus unconditional variance

- The conditional variance given the previous observation is
Var[Y; | Yi—1] = Var[c + ¢Yi_1 + & | Yi1] = 0°

- The unconditional mean is

0.2

M = Va.r[}/;] = 1_7¢2

- Notice that v > Var[Y; | Y;—1]

"



Autocovariance and autocorrelation

- The autocovariance is given by

7 = ¢ (Gi=12,...)

- The autocovariance is given by

pj=¢ G=12...)
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Example 1:

Realizations of an AR(1) process



3
D
p

At
A

The three processes are build from the same white noise realization. Notice how
process becomes more persistent as ¢ approaches 1.
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Markov chains



Markov property

A stochastic process {Z;}2, has the Markov property if for all
k> 1and all ¢

PZsy1| Zt, Zs-1s ..., Zi—k] = P[Zi11 | Z4]

That is, the the probability distribution of Z;11 only depends
upon the realization of Z;.
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Example 2:

AR(1) process



- The AR(1) process is a Markov process:
Zt = (1 — p)Z-f- pZtl + €
where p € [0,1), and ; ~ iidN (0, 0?) is a white noise

process.

- Glven Z;, next period’s variable Z;,1 is normally
distributed with:
mean: E(Zy, 1| Z;) = ( )Z—I—pZt
variance: Var(Z;+1|2;) =

15



Markov Chains

Markov chains are discrete valued Markov processes. They are
characterized by three objects:

1. The n different realizations of Z;, represented by the

column vector z = [z1, 22, . . ., 2n)".
2. The probability distribution of the initial date ¢ =0,
Ty = [71’01,7l’02, Ce ,Won]/, where T = IP)[ZO = Zi].

3. The transition matrix P = (p;;), where
pij = P[Zi11 = 25| Z¢ = 2], representing the dynamics of
the process.

Notice that

* Pij = 0 and Z?:l Dij = 1.
c g > 0 and Z?:l T = 1.



Example 3:

Unemployment



A worker can either be employed or unemployed:

- If unemployed, she will get a job with probability p = 45%
- If employed, she will lose her job with probability ¢ = 5%

The worker is employed at ¢t = 0. Then the Markov chain is:

outcomes {unemployed, employed} or z = [(1)]
.. - 0
initial probability my = [1]

transition probability P =

1—-p »p ~10.55 0.45
g 1—gq| [0.05 0.95

0.45
T
0.55 CG\_/‘:) 0.95
0.05



Example 4:

Credit ratings



Transition of the credit ratings from one year to the next:

‘ AAA AA A BBB BB B CCC D N.R.
AAA | 90.34 5.62 0.39 0.08 0.03 0 0 0 3.5
AA 0.64 88.78 6.72 0.47 0.06 0.09 0.02 0.01 3.21
A 0.07 216  87.94 4.97 0.47 0.19 0.01 0.04 4.16
BBB 0.03 0.24 456  84.26 4.19 0.76 0.15 0.22 5.59
BB 0.03 0.06 0.4 6.09 76.09 6.82 0.96 0.98 8.58
B 0 0.09 0.29 0.41 511 74.62 3.43 53 10.76
CcC 0.13 0 0.26 0.77 1.66 893 5319 2194 1314
D 0 0 0 0 1 31 929 5129 3732
N.R. 0 0 0 0 0 0.1 8,55 74.06 17.07

Transition probabilities are expressed in %.

Higher ratings are more stable: the diagonal coefficients of the

matrix go decreasing.

- Starting from the rating AA it is easier to be downgraded
(probability 6.72%) than to be upgraded (probability 0.64%).



Transition over multiple periods

- The transition matrix is also called a stochastic matrix.

- It defines the probabilities of moving from one value of
the state to another in one period.

- The probability of moving from one value of the state to
another in two periods is determined by P2 because

P[Zi12 = 2|2y = 2]

n
= PlZiy2 = 2| Zs1 = 2] X P[Z41 = 24| Z¢ = 2]
h=1

- mephj =P
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The unconditional distribution

The probability distribution of Z; evolves according to
™., = mP. Therefore ~ m = mP

wh = mh P2

mh, = mh Pk
The limit for k — oo is the time invariant, stationary, or
ergodic distribution of the Markov chain. It is defined by

7=1P & ({[-P)r=0

The limit exist and is independent of the initial distribution mg

ifpgf) > 0 for some integer k > 1.
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Example 5:

Unemployment (cont.)



For the worker who can either be employed or unemployed
according to Markov matrix

1-p p ] _ [o.55 0.45]

pP=
q 1—gq 0.05 0.95

/
the stationary distribution {x 1— x} Is the solution to:

{0 115 e [ e

. L 0.1 .
Then z = L and the stationary distribution is: [ . This
p+q 0.9

means that the long run probability of being unemployed is
10%.

|

0
0

|
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