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Introduction

• Markov processes are an indispensable ingredient of DSGE
models.

• They preserve the recursive structure that these models
inherit from their deterministic relatives.

• In this lecture we review a few results about these
processes that we will need repeatedly in the modeling of
business cycles.
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Stochastic process



Stochastic Process

A stochastic process is a time sequence of random variables
{Yt}∞t=0.

Two types of processes:

Continuous if realizations are taken from an interval of the
real line Yt ∈ [a, b] ⊆ R.

Discrete if there is a countable number of realizations
Yt ∈ {y1, y2, . . . , yn}.
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i.i.d. Stochastic Process

• The elements of a stochastic process are identically and
independently distributed (iid for short), if the probability
distribution is the same for each member of the process
Zt and independent of the realizations of other members
of the process.

• In this case

P[Y1 = y1, Y2 = y2, . . . , YT = yT ] =

P(Y1 = y1)× P(Y2 = y2)× · · · × P(YT = yT )
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Unconditional moments

• Unconditional cumulative distribution function

FYt (y) = P [Yt ≤ y]

• Unconditional expectation (mean)

µt ≡ E (Yt) =

∫ ∞

−∞
y dFYt (y)

• Unconditional variance

γ0t ≡ E (Yt − µt)
2 =

∫ ∞

−∞
(y − µt)

2 dFYt (y)

• Autocovariance

γjt ≡ E (Yt − µt) (Yt−j − µt−j)
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Stationarity

If neither the mean µt nor the autocovariances γjt depend on
the date t, then the process for Zt is said to be
covariance-stationary or weakly stationary:

E (Yt) = µ for all t
E (Yt − µ) (Yt−j − µ) = γj for all t and any j
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White noise

• The basic building block for the processes considered in
this lecture is a sequence {ϵt} whose elements have mean
zero and variance σ2,

E (ϵt) = 0 (zero mean)
E
(
ϵ2t
)
= σ2 (constant variance)

E (ϵtϵτ ) = 0 for t ̸= τ (uncorrelated terms)

• If the terms are normally distributed

ϵt ∼ N(0, σ2)

the we have the Gaussian white noise process.
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The first-order autoregressive
process



Definition of a AR(1) process

• A first-order autoregression, denoted AR(1), satisfies the
following difference equation:

Yt = c+ ϕYt−1 + ϵt

where {ϵt} is a white noise sequence.
• It is stationary if and only if |ϕ| < 1.
• In what follows, we assume the process is stationary.
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MA(∞) representation of a AR(1) process

• If the AR(1) process is stationary, it can be written

Yt =
c

1− ϕ
+ ϵt + ϕϵt−1 + ϕ2ϵt−2 + ϕ3ϵt−3 + . . .
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Conditional versus unconditional mean

• The conditional mean given the previous observation is

E[Yt |Yt−1] = c+ ϕYt−1

• The unconditional mean is

µ ≡ E[Yt] =
c

1− ϕ

• Since c = (1− ϕ)µ, the AR(1) process can be written as
deviations from ‘equilibrium’

Yt − µ = ϕ(Yt−1 − µ) + ϵt
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Impulse-response

• Starting with Yt−1, the value of Yt+s will be

Yt+s−µ = ϕs+1(Yt−1−µ)+ϕsϵt+ϕs−1ϵt+1+· · ·+ϕϵt+s−1+ϵt+s

• Suppose that starting in ‘equilibrium’ (Yt−1 − µ = 0) there
is a time-t transitory shock (ϵt = ν) but no more shocks
thereafter (ϵt+1 = · · · = ϵt+s = 0). Then

Yt+s − µ = ϕsν

• This is known as an impulse-response function.
• Notice that the process will return to equilibrium as long
as |ϕ| < 1.
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Conditional versus unconditional variance

• The conditional variance given the previous observation is

Var[Yt |Yt−1] = Var[c+ ϕYt−1 + ϵt |Yt−1] = σ2

• The unconditional mean is

γ0 ≡ Var[Yt] =
σ2

1− ϕ2

• Notice that γ0 > Var[Yt |Yt−1]
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Autocovariance and autocorrelation

• The autocovariance is given by

γj = ϕjγ0 (j = 1, 2, . . . )

• The autocovariance is given by

ρj = ϕj (j = 1, 2, . . . )
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Example 1:

Realizations of an AR(1) process
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The three processes are build from the same white noise realization. Notice how
process becomes more persistent as ϕ approaches 1.
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Markov chains



Markov property

A stochastic process {Zt}∞t=0 has the Markov property if for all
k ≥ 1 and all t,

P[Zt+1 |Zt, Zt−1, . . . , Zt−k] = P[Zt+1 |Zt]

That is, the the probability distribution of Zt+1 only depends
upon the realization of Zt.
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Example 2:

AR(1) process



• The AR(1) process is a Markov process:

Zt = (1− ρ)Z̄ + ρZt1 + ϵt

where ρ ∈ [0, 1), and ϵt ∼ iidN(0, σ2) is a white noise
process.

• Given Zt, next period’s variable Zt+1 is normally
distributed with:

mean: E(Zt+1 |Zt) = (1− ρ)Z̄ + ρZt

variance: Var(Zt+1 |Zt) = σ2
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Markov Chains

Markov chains are discrete valued Markov processes. They are
characterized by three objects:

1. The n different realizations of Zt, represented by the
column vector z = [z1, z2, . . . , zn]

′.
2. The probability distribution of the initial date t = 0,

π0 = [π01, π02, . . . , π0n]
′, where π0i = P[Z0 = zi].

3. The transition matrix P = (pij), where
pij = P[Zt+1 = zj |Zt = zi], representing the dynamics of
the process.

Notice that

• pij ≥ 0 and
∑n

j=1 pij = 1.
• π0i ≥ 0 and

∑n
i=1 π0i = 1.
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Example 3:

Unemployment



A worker can either be employed or unemployed:

• If unemployed, she will get a job with probability p = 45%

• If employed, she will lose her job with probability q = 5%

The worker is employed at t = 0. Then the Markov chain is:

outcomes {unemployed, employed} or z =

[
0

1

]
.

initial probability π0 =

[
0

1

]
.

transition probability P =

[
1− p p

q 1− q

]
=

[
0.55 0.45

0.05 0.95

]

u e

0.45

0.55

0.05

0.95
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Example 4:

Credit ratings



Transition of the credit ratings from one year to the next:

AAA AA A BBB BB B CCC D N.R.

AAA 90.34 5.62 0.39 0.08 0.03 0 0 0 3.5
AA 0.64 88.78 6.72 0.47 0.06 0.09 0.02 0.01 3.21
A 0.07 2.16 87.94 4.97 0.47 0.19 0.01 0.04 4.16
BBB 0.03 0.24 4.56 84.26 4.19 0.76 0.15 0.22 5.59
BB 0.03 0.06 0.4 6.09 76.09 6.82 0.96 0.98 8.58
B 0 0.09 0.29 0.41 5.11 74.62 3.43 5.3 10.76
CCC 0.13 0 0.26 0.77 1.66 8.93 53.19 21.94 13.14
D 0 0 0 0 1 3.1 9.29 51.29 37.32
N.R. 0 0 0 0 0 0.1 8.55 74.06 17.07

Transition probabilities are expressed in %.

• Higher ratings are more stable: the diagonal coefficients of the
matrix go decreasing.

• Starting from the rating AA it is easier to be downgraded
(probability 6.72%) than to be upgraded (probability 0.64%).
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Transition over multiple periods

• The transition matrix is also called a stochastic matrix.
• It defines the probabilities of moving from one value of
the state to another in one period.

• The probability of moving from one value of the state to
another in two periods is determined by P2 because

P[Zt+2 = zj |Zt = zi]

=

n∑
h=1

P[Zt+2 = zj |Zt+1 = zh]× P[Zt+1 = zh|Zt = zi]

=

n∑
h=1

PihPhj = P
(2)
ij
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The unconditional distribution

The probability distribution of Zt evolves according to
π′
t+1 = π′

tP . Therefore π′
1 = π′

0P

π′
2 = π′

0P
2

...
π′
k = π′

0P
k

The limit for k → ∞ is the time invariant, stationary, or
ergodic distribution of the Markov chain. It is defined by

π′ = π′P ⇔ (I − P ′)π = 0

The limit exist and is independent of the initial distribution π0

if p(k)ij > 0 for some integer k ≥ 1.
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Example 5:

Unemployment (cont.)



For the worker who can either be employed or unemployed
according to Markov matrix

P =

[
1− p p

q 1− q

]
=

[
0.55 0.45

0.05 0.95

]

the stationary distribution
[
x 1− x

]′
is the solution to:{[

1 0

0 1

]
−

[
1− p q

p 1− q

]}[
x

1− x

]
=

[
p −q

−p q

][
x

1− x

]
=

[
0

0

]

Then x = q
p+q and the stationary distribution is:

[
0.1

0.9

]
. This

means that the long run probability of being unemployed is
10%.
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